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Dimensionality of consumer search space
drives trophic interaction strengths
Samraat Pawar1, Anthony I. Dell1,2 & Van M. Savage1,3,4

Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic
interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological
systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths,
arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal
and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with
extensive data (376 species, with body masses ranging from 5.24 3 10214 kg to 800 kg), we find that consumption rates
scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly
(exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a
single exponent (of approximately 0.75) in consumer–resource and food-web research. Further analysis of 2,929
consumer–resource interactions shows that dimensionality of consumer search space is probably a major driver of
species coexistence, and the stability and abundance of populations.

Understanding how physical differences between habitats, such as dif-
ferences in precipitation, temperature and spatial dimensionality, affect
trophic interactions is key to predicting stability and diversity in eco-
logical systems1–6. By assuming a simple relationship between con-
sumption rate (energy acquisition) and metabolic rate (energy use),
most studies assume that per-capita consumption rates scale with con-
sumer body size (m) to an exponent of approximately 0.75, irrespective
of taxon, environment or dimensionality7–13. Consequently, mass-
specific production rates8,14 scale as m20.25, including biomass flow rate
and per-link trophic interaction strengths in food webs10,11,13,15,16.
Deviations from quarter-power scaling can arise for at least two reasons.
First, foraging is constrained by traits, such as length of locomotory
appendages or visual acuity, that do not scale directly with metabolic
rate8,17–20. Second, species interactions in the field do not occur under the
idealized conditions at which metabolic and ingestion rates are usually
measured, in which individuals are not foraging, growing or repro-
ducing8,18,19. Therefore, consumption-rate scaling may be more closely
tied to field or maximal metabolic rate (exponent greater than 0.85),
rather than resting metabolic rate (exponent of approximately 0.75)8,21.

From a biomechanical perspective, both non-metabolic and
metabolic constraints on consumption rate should depend on the
habitat’s spatial dimensionality because it strongly influences the
energetic costs of locomotion (for example, to overcome gravity)18,19

and the probability either of a consumer detecting a resource or vice
versa17,20. Indeed, over two decades ago, habitat dimensionality was
proposed as a major factor driving food-web structure and ecosystem
dynamics1,4,22. Subsequent studies have further elucidated the effects
of habitat dimensionality3,6,23–25. Notably, previous models suggest
that grazers (one type of consumer; Fig. 1 and Supplementary Fig. 1)
are constrained by how resources are distributed in space3,24,25. These
studies are foundational, but do not apply to the full diversity of
foraging strategies and interactions in natural communities.

Here we show that shifting focus from dimensionality of the
habitat3,4,6,23–25 to the dimensionality of each trophic interaction yields
a new, mechanistic theory for trophic interaction strengths (Figs 1

and 2). Our approach allows both 2D and 3D interactions within the
same habitat to be considered, and can be applied to the wide range of
foraging strategies found in nature (Fig. 1 and Supplementary Fig. 1).
To test our predictions, we compiled a data set that contains a per-
capita consumption rate of 255 consumer–resource interactions
covering 230 species, 12 orders of magnitude in body size, and aquatic
(189 interactions) as well as terrestrial (66 interactions) habitats
(Methods).
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Figure 1 | Consumer–resource interactions can be classified by
dimensionality. If the consumer searches for resources (by flying, swimming,
or sitting and waiting) on habitat surfaces (for example, on the water surface,
benthos or in grassland), the interaction is 2D, and if it searches habitat volume,
the interaction is 3D. A consumer or resource may be involved in both 2D and
3D interactions, corresponding to different consumer–resource combinations
and foraging strategies.
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Empirical patterns
Using our comprehensive data set, we first demonstrate strong
empirical differences between 2D and 3D interactions in the scaling
of search and consumption rate with consumer body size (Fig. 3).
When resources are scarce, more closely resembling field conditions,
the observed scaling exponent for consumption rate in 3D interac-
tions (1.06 6 0.06 (95% confidence intervals)) is significantly higher
than in 2D (0.85 6 0.05) (likelihood ratio test, P , 0.001) (Fig. 3a, c).
These scaling exponents are significantly higher than the currently
used exponent of 0.75 (one-sample F-test P , 0.01). Furthermore,
apart from organisms that are much smaller than a honeybee (weigh-
ing less than 3 3 1024 kg, where 2D and 3D scaling lines would
intersect), 3D consumption rates are higher than in 2D (Fig. 3a, b).
For a 1-kg organism, 3D consumption rate is ten times higher than in
2D (6.30 6 3.01 versus 0.63 6 0.24 mg s21) (Fig. 3a, b).

When resources are abundant, typical of laboratory conditions,
consumption rates still scale more steeply (1.00 6 0.06 versus
0.85 6 0.05) and show higher baseline values in 3D than 2D
(19.95 6 11.00 versus 3.16 6 1.30 mg s21 for a 1-kg organism)
(Fig. 3c, d). Thus, even at high resource densities at which searching
for resources is expected to be less constraining, dimensionality
remains important. The canonical 0.75 scaling exponent for con-
sumption rate is excluded from the 95% confidence intervals of the
observed scaling exponents under all conditions (Fig. 3).

We also analysed the scaling of search rates. The rate at which a
consumer searches for a resource limits consumption rates when
resources are scarce (Figs 1, 2 and 3e, f). For active-capture and
grazing foragers, search rate (area/time or volume/time) is the speed
at which a consumer moves through the landscape to find food,
whereas for sit-and-wait foragers, it is the speed at which resources
move through the consumer’s attack space (Figs 1 and 2). We find
that search rates have a scaling exponent of 1.05 6 0.08 in 3D
and 0.68 6 0.12 in 2D (Fig. 3e, f), indicating that differences in
consumption-rate scaling are primarily driven by differences in
search rate. This result is a key validation of our model below.

A mechanistic model for search rate
Our empirical analysis reveals that search- and consumption-rate
scaling vary systematically with the dimensionality of search space
(that is, interaction dimensionality). We now present a model that

predicts these empirical patterns by focusing on three key compo-
nents of search rate: relative velocity, reaction distance and handling
time13,17,26 (Fig. 2). Relative velocity (vr) is the rate at which consumer–
resource pairs converge across the landscape, and it is the root-mean-
square of their body velocities. A potential encounter occurs when
either the resource or consumer comes within the distance (d) at
which one can detect and react to the other. Because each individual
moving through the landscape maintains a search space enclosed by a
surface with radius d, we can derive (Supplementary Information)
that the search rate (a) increases with dimensionality (D):

a~sDvrdD{1 ð1Þ
where sD 5 2 in 2D and p in 3D. Based on biomechanical principles,
we obtained predictions for the scaling exponents pv and pd (of vr and
d, respectively; Fig. 2), and validated them empirically using another,
independent data set that we compiled (Table 1 and Supplementary
Information). Using these, we predict:

a~a0mpvz2pd(D{1)
C f (kRC) ð2Þ

where mC is consumer body mass. For active foraging, the constant
a0 is 2v0d0 in 2D and pv0d2

0 in 3D. The function f(kRC) isolates
dependence of a on consumer–resource size ratio kRC (that is,
mR/mC (where mR is resource body mass)) from its direct dependence
on consumer mass. Both a0 and f(kRC) vary weakly with foraging
strategy (Supplementary Information). To relate equation (2) directly
to previous studies by expressing it solely in terms of consumer mass,
we determine how kRC scales with consumer mass using our con-
sumption-rate data set. Substituting this scaling together with values
for pv and pd (Table 1) into equation (2) gives:
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Figure 3 | Effect of interaction dimensionality on scaling of search and
consumption rate. a–d, Scaling of per-capita consumption rate (kg s21) with
consumer body mass (kg) at different resource densities. e, f, Scaling of search
rate (m2 s21 in 2D, and m3 s21 in 3D). See Table 1 for sample sizes. Solid black
lines were fitted using OLS regression (see Methods). Exponents in all panels
except e are significantly different from the canonical 0.75 value (dotted line).
Consumption-rate scaling shows less variance than search rate, possibly
because consumers choose resources that maximize biomass consumption rate
(product of search rate, resource density and resource mass; equation (4)), thus
minimizing scatter.
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Figure 2 | Model for scaling of search and consumption rate with body size.
This model (2D active capture is shown here) can also be used to predict search
and consumption rates for grazing and sit-and-wait foraging strategies
(Supplementary Information).
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a<a2Dm0:63
C in 2D

a<a3Dm1:03
C in 3D

ð3Þ

where a2D and a3D are dimension-specific constants. These exponents
match our empirical results extremely well (Fig. 3e, f and Table 1).
Even if the weak contribution of f(kRC) (Supplementary Information)
to the scaling is ignored, the predicted search rate exponents (pv 1
2pd(D–1)) would be 0.68 in 2D and 1.06 in 3D. These exponents are
extremely close to the empirical estimates of 0.68 6 0.12 in 2D and
1.05 6 0.08 in 3D (Table 1; Fig. 3).

Predictions for consumption rate
The product of search rate, a, and resource density, xR (individuals per
area or volume), yields encounter rate. Consumption rate is con-
strained by this encounter rate and by handling time; that is, the
duration of time to pursue, subdue and ingest each resource
(Fig. 2). Together, these components give a saturating per-capita bio-
mass consumption rate (c) (Holling’s type II functional response27) in
terms of spatial dimension (D):

c~
amRxR

1zthamRxR
~

s’DvrdD{1mRxR

1zths’DvrdD{1mRxR
ð4Þ

Here, mR is the average mass of the resource, xRmR is resource biomass
density, and th is conventional handling time divided by resource
mass (Supplementary Information 1.4). The constant s9D includes a
roughly constant attack success probability. Our results are robust to
changes in this probability for resource items common in the con-
sumer’s diet (Supplementary Information).

With scarce resources (xR R xR,min) the second term in the denom-
inator of equation (4) becomes much smaller than 1, and thus c <
axRmR. Substituting the scaling for a (equation (2)) gives:

c~a0mpvz2pd D{1ð Þ
C f kRCð ÞxRmR ð5Þ

To convert this into a scaling relationship solely with consumer mass,
we use our functional response data set (Supplementary Information)
to quantify the scaling of xR and mR with consumer mass (Table 1).
Substituting these along with the previously determined scaling of size
ratio (kRC) in equation (5) gives:

c<c2Dm0:78
C in 2D

c<c3Dm1:16
C in 3D

ð6Þ

where c2D and c3D are dimension-specific constants. Equation (6)
predicts the steeper and superlinear scaling that is empirically
observed in 3D for consumption rate (Fig. 3a, b and Table 1). Note
that the scaling of consumption rate, c, closely matches the scaling of
search rate, a (compare equations (3) and (6)). The existing small
difference arises because of the weak scaling of the product (xRmR)
of resource density and mass with consumer mass (Table 1 and
Supplementary Information).

When resources are unlimited (xR R ‘), the term s0DvrdD{1xRmR
dominates both the numerator and denominator of equation (4),
resulting in a value of 1. Consequently, search and detection become
instantaneous, and consumption rate depends only on mass-specific
handling rate (1/th) (Fig. 2):

c~t{1
h,0 mb

C ð7Þ

where b is the scaling exponent of the consumer’s whole-body
metabolic rate and th,0 is a body-temperature and metabolic-state-
dependent constant. We find that mass-specific handling time, th,
scales as 1.1 6 0.07 in 3D and 1.02 6 0.08 in 2D (Supplementary
Information). However, the observed consumption-rate scaling in 2D
is 0.85 6 0.05, and is 1.00 6 0.06 in 3D, both closer to predictions for
scarce rather than unlimited resources (Table 1). Therefore, even
when functional responses seem to saturate and resources are
considered abundant, consumption rate does not scale like handling
time, and must therefore continue to be constrained by search
dimensionality. This also explains why most previous studies have
reported 0.75 power scaling of consumption rate7,8,19. The data in
these previous studies are actually maximal ingestion rates collected
from sedentary individuals that are provided with unlimited
resources7,8,19. Our data, for both scarce and abundant resources, are
more representative of field conditions because they are extracted
from functional response data.

Although our theory predicts that a3D and c3D are larger than a2D
and c2D, respectively (Supplementary Information), the magnitude of
the observed difference is much larger than predicted (Fig. 3). One
explanation is that most 3D interactions are aquatic, and most 2D
interactions are terrestrial. The energetic cost for swimming is about
ten times lower than for running18,19, probably increasing encounter
rates for non-directed movement. This difference could elevate the
intercept (but not exponent), contributing to the observed ten times
larger baseline consumption rates in 3D. Nevertheless, 2D aquatic and
2D terrestrial interactions scale similarly (Fig. 3a–c), indicating other
differences between pelagic (3D) and benthic (2D) aquatic zones, and
highlighting the need for further study.

Dimensionality and trophic interaction strengths
By deriving the scaling of search rate (a), a fundamental parameter in
consumer–resource and food-web models, we have provided a mech-
anistic basis for linking interaction dimensionality with trophic inter-
action strengths, which are proportional to axRmR/mC (refs 11, 13, 15,
16, 28, 29). In contrast to current theories, our results show that
scaling of trophic interaction strength can deviate substantially from
m{0:25

C . Specifically, if resource size (mR) and resource density (xR)
are decoupled from consumer size, consumption rate scales like
search rate (equation (3)), and thus interaction strength scales as
axRmR=mC!m{0:32

C in 2D, and m0:05
C in 3D. Even when mR and xR

scale with consumer mass (Table 1 and Supplementary Fig. 2), trophic
interaction strengths scale as m{0:15

C (2D) or m0:06
C (3D) when

resources are scarce, and as m{0:15
C (2D) or m0

C (3D) when resources
are abundant. This variation in the scaling of trophic interaction
strengths implies that consumer–resource dynamics are likely to be
constrained by interaction dimensionality.

Implications for population dynamics
By incorporating our scaling equations for a (equation (3)) into a
population dynamics model (Methods), we now show that dimen-
sionality can affect populations in three fundamental ways. First, 3D
interactions allow a larger range of viable consumer–resource body-size

Table 1 | Empirical and predicted scaling exponents of consumption rate and its components with interaction dimensionality (D)
D Search and consumption rate (n 5 255) Consumption-rate components

Search rate
(scarce resources)

Consumption rate Relative velocity
(n 5 21)

Reaction distance
(n 5 39)

Handling time
(n 5 78)

Resource mass
(n 5 255)

Resource density
(n 5 255)

Scarce resources Abundant resources

2D 0.68 6 0.12* (0.63) 0.85 6 0.05 (0.78) 0.85 6 0.05 (0.78) 0.26 6 0.04* (0.27) 0.21 6 0.08 (0.33) 21.026 0.08 (20.75) 0.73 6 0.10 20.79 6 0.08
3D 1.05 6 0.08* (1.03) 1.06 6 0.06 (1.16) 1.00 6 0.06 (1.16) 0.26 6 0.04* (0.27) 0.20 6 0.06 (0.33) 21.1 6 0.07 (20.75) 0.92 6 0.08 20.86 6 0.07

For search and consumption rate, if the 3D exponent is significantly larger than 2D as predicted (likelihood ratio test), both are shown in bold. There are no predicted exponents for resource mass and resource
density scaling because they depend upon experimental design (Supplementary Information). Steeper than predicted exponents of handling time may arise because pursuit and subjugation scale with maximal
rather than resting metabolic rate8,21.
*Empirical exponent is statistically indistinguishable (P 5 0.05 for all significance tests) from the predicted value (in parentheses).
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combinations than in 2D, primarily because 3D consumption rates
scale more steeply and have higher baseline values. Depending upon
baseline carrying capacity (K0, defined as maximal biomass density for
a 1 kg organism; Supplementary Information), the majority of 2,929
species pairs from seven communities fall within our predicted
coexistence domains (Fig. 4a), with upper and lower limits of observed
size ratios closely matching predicted extinction boundaries. In 2D,
when K0 ranges from 0.01 to 1 (kg0.75 m2) the predicted coexistence
domains contain 88.8% to 99.8% of the empirical data. In 3D, when K0
ranges from 3 to 300 (kg0.75 m3), 74.3% to 99.8% of the data are within
the predicted domain (we explain below why carrying capacity is
typically higher in 3D than 2D). Thus, interaction dimensionality
may explain why consumer–resource interactions with larger size
ratios (for example, filter feeding30) and larger consumers are more
common in pelagic environments compared to benthic or terrestrial
environments1,8,31 (Fig. 4a).

Second, because strong trophic interactions can destabilize com-
munities15,16,28,29, communities dominated by 3D interactions (for
example, pelagic or aerial habitats) may be inherently unstable. Indeed,
we find that persistent consumer–resource boom–bust dynamics are
more likely in 3D than in 2D (Fig. 4b and Supplementary Fig. 3). In
nature, these instabilities may be partly offset by larger regions of
coexistence that are possible in 3D (Fig. 4a) or by negative consumer
density dependence3,24. Nevertheless, our results are consistent with

empirical observations that pelagic communities appear less stable
than terrestrial communities5. They also suggest that 3D aquatic eco-
systems may experience more frequent top-down regulation than 2D
terrestrial ecosystems32,33.

Third, we predict that population densities across consumer–
resource pairs scale with body size more steeply in 3D (exponent of
–1.12) than 2D (exponent of –0.76) (Fig. 4c). Only 2D scaling matches
Damuth’s 20.75 rule, which was derived from data on terrestrial
mammals (that is, 2D consumers)14,34. Thus, for a given carrying
capacity (maximal abundance of resources), steeper size–abundance
scaling of consumers in 3D habitats relative to 2D habitats should be
expected, and this helps to explain deviations from Damuth’s rule in
local communities6,14,34–36.

In our population model, we assume resource carrying capacities
scale with a 0.75 exponent (Supplementary Information), as expected
when food supply to resources is unlimited (equation (7))26. For
example, maximal abundance of primary producers in 2D (for
example, terrestrial plants) and 3D (for example, pelagic phytoplankton)
should scale as metabolic rate (that is, Damuth’s rule) irrespective of
dimensionality, which is well supported empirically6,8,37,38. Future studies
should incorporate potential differences in scaling of carrying capacity
across trophic levels. We also assume higher baseline carrying capacities
(K0) in 3D than 2D (Fig. 4a) because pelagic (3D) phytoplankton have
2–3 orders of magnitude higher turnover rates than terrestrial plants and
form a less variable and more nutritious autotroph base than plants in
2D terrestrial ecosystems such as grasslands6,32,39. This is an important
difference between habitats because it helps to explain the potential
advantage of 3D interactions. If resources had the same numbers
(but not densities) in 2D and 3D habitats (for example, 1 kg m22 and
1 kg m23), resources would probably be too sparse for a 3D search space
to be advantageous.

The consequences of interaction dimensionality for population
dynamics may also be mediated by other abiotic differences between
aquatic and terrestrial habitats. For example, 2D habitats such as
benthic zones may have a greater potential for prey refuges than 3D
habitats such as pelagic zones. Structural complexity reduces con-
sumer search rates, potentially resulting in type III functional res-
ponses instead of type I or II (refs 30, 40). We find no significant
propensity for type III functional responses in 2D relative to 3D in our
data set (Supplementary Information), probably because laboratory
experiments typically use habitats that are simpler than real habitats.
Even if type III responses are more common in 2D, results for the effects
of dimensionality on consumer–resource population dynamics remain
qualitatively unchanged (Supplementary Information). Nevertheless,
an important future direction will be to understand how habitat com-
plexity affects search and consumption rates. Synthesizing our model
with previous work on fractal dimensionality of resource disper-
sion3,22,25 should be an important step in this direction. Perception of
structural complexity also scales with body size3. Grasslands may be
structurally simple for a bison, but complex for a nematode.

Conclusion
Our study provides new and more accurate scaling relationships for
consumer–resource interactions11,16,31, gives novel insights into con-
sumer–resource dynamics, and offers a mechanistic model that incor-
porates dimensionality and foraging strategy into food-web dynamics.
Our results help to explain why aquatic environments generally show
higher energy fluxes and lower stability than terrestrial environments5,
why they often show inverted biomass pyramids5,32, and why larger
consumers have a relative advantage in pelagic (3D) versus terrestrial
(2D) environments1,6. Predicting strengths of pair-wise trophic inter-
actions is key to understanding higher-order effects, including indirect
interactions and polyphagy5,28,29. Our model for pairwise interactions
should provide a starting point for studying how the effects of
dimensionality propagate through entire community food-webs.
Studying communities with mixtures of 2D and 3D interactions will
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Figure 4 | Effects of interaction dimensionality on consumer–
resource dynamics. a, Intensity map of logarithm of total consumer–resource
equilibrium densities, ranging from coexistence at high (dark) to low (yellow)
densities, or extinction (white). Black dots are real 2D (n 5 1,627) and 3D
(n 5 1,302) consumer–resource pairs (Supplementary Table 8). Consumer and
resource sizes are equal along the diagonal line. Lower extinction boundaries
(dashed lines) correspond to different baseline carrying capacities (K0); the
outermost boundary corresponds to empirical estimates. Predicted 2D
coexistence regions that lack observed species pairs probably represent under-
sampling of interactions for the smallest consumers (for example, micro
predators) and largest consumers (for example, large mammalian
herbivores)31. b, Comparison of population dynamics of two 2D (1 and 2 in
a) and two 3D (3 and 4 in a) species pairs. c, Scaling of equilibrium abundance
across all 3D (blue) and 2D (red) consumer–resource pairs plotted in a. The
variation and discrete appearance of the data arises mainly because a consumer
may feed on multiple resource species of different sizes and vice versa.
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be particularly revealing in this context. We conclude that interaction
dimensionality is a critical factor driving consumer–resource
dynamics. A better understanding of the effects of dimensionality will
lead to better predictions of food-web and ecosystem dynamics, and
how these complex systems might respond to environmental change.

METHODS SUMMARY
Functional response data were compiled from the literature (Supplementary
Table 5). Interaction dimensionality was assigned according to consumer search
space (Fig. 1). The minimum resource density in each study was classified as
scarce, and the density corresponding to the maximum consumption rate was
classified as abundant. The search rate (a) in each functional response was cal-
culated at each scarce density by dividing the associated consumption rate (c) by
the associated density. The scaling of a is our fundamental theoretical result
(equation (2)) and is based on derived scalings for vr, d and th. We verified
predicted scalings of these components by compiling an additional data set of
136 interactions between 157 taxa. To move from predicted scaling exponents of
a (equation (3)) to predictions for scaling exponents of c (equation (4)), we
calculated the scaling of resource number density (xR) and mass (mR) across
studies in the functional response database. All exponents were estimated using
ordinary least squares regression (OLS) of log trait value versus log body mass.
Major axis regression yields steeper exponents than OLS but does not qualita-
tively alter our results. We also tested for robustness of predictions to realistic
variation in body velocity scaling. All data were standardized to 15 uC using the
Boltzmann–Arrhenius model9,14. For population dynamics we used the
Rosenzweig–MacArthur model for the rate of change in time, t, for the resource
(R 5 xRmR) and consumer (C 5 xCmC) biomass densities13,26:

dR
dt

~rR 1{
R
K

! "
{

a=mCð ÞRC
1zthaR

dC
dt

~
e a=mCð ÞRC

1zthaR
{zC

Here, r is the resource’s intrinsic biomass production rate, K is resource’s biomass
carrying capacity, z is the consumer’s biomass loss rate, e is the consumer’s
biomass conversion efficiency, and th is the resource mass-specific handling time.
Size scaling for a and th were based on our results, and that for r, z and K were
based on previous work8,9,14. We tested robustness of our results by varying model
structure between the Rosenzweig-MacArthur model and the Lotka–Volterra
predator–prey model, and also by using a type III instead of a type II functional
response.
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