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To understand the effects of temperature on biological systems,we
compile, organize, and analyze a database of 1,072 thermal
responses for microbes, plants, and animals. The unprecedented
diversity of traits (n = 112), species (n = 309), body sizes (15 orders of
magnitude), and habitats (all major biomes) in our database allows
us to quantify novel features of the temperature response of bi-
ological traits. In particular, analysis of the rising component of
within-species (intraspecific) responses reveals that 87%arefitwell
by the Boltzmann–Arrhenius model. The mean activation energy
for these rises is 0.66 ± 0.05 eV, similar to the reported across-
species (interspecific) valueof 0.65 eV.However, systematic variation
in the distribution of rise activation energies is evident, including
previously unrecognized right skewness around a median of 0.55
eV. This skewness exists across levels of organization, taxa, trophic
groups, and habitats, and it is partially explained by prey having
increased trait performance at lower temperatures relative to pred-
ators, suggesting a thermal version of the life-dinner principle—
stronger selection on running for your life than running for your
dinner. For unimodal responses, habitat (marine, freshwater, and
terrestrial) largely explains the mean temperature at which trait
values are optimal but not variation around the mean. The distri-
bution of activation energies for trait falls has amean of 1.15± 0.39
eV (significantly higher than rises) and is also right-skewed. Our
results highlight generalities and deviations in the thermal re-
sponse of biological traits and help to provide a basis to predict
better how biological systems, from cells to communities, respond
to temperature change.

Investigation of the thermal response of diverse biological pro-
cesses should reveal general mechanisms by which life responds

to Earth’s complex and rapidly changing thermal landscape (1).
General patterns of how temperature affects biological systems
can be deduced in at least two ways. First, physiological and
ecological traits (e.g., metabolic rate, encounter rate) can be
measured for each species at its optimal temperature and plotted
together to construct a single curve across species (2, 3). This in-
terspecific approach has been used extensively (2–8), including
studies of how climate affects biological systems (8–11). Second,
a curve can be constructed by measuring trait values across a range
of temperatures for a single species (intraspecific) (12, 13). In both
intra- and interspecific cases, each curve can be characterized by
its Q10 value or activation energy (4, 6). These parameters, along
with optimal temperature and response breadth for intraspecific
responses, can be contrasted to explore effects of taxa, traits, and
habitats. Indeed, for nearly a century, intraspecific studies have
been conducted on a huge diversity of physiological and ecological
traits (3, 6, 12, 14–17). Comparative studies of these intraspecific
data have tended to focus on a subset of available data (16, 18–21).
A broad-scale comparative analysis of intraspecific thermal
responses has not been performed previously because of a lack of
a comprehensive database. As we now show, this approach pro-
vides new insights into the general features of thermal responses
not accessible with interspecific studies.
We construct from the literature a database containing 2,445

intraspecific temperature responses. Our ecoinformatics ap-
proach allows us to: (i) combine these data into a single database
with consistent measurement units and trait definitions and (ii)

describe patterns that suggest mechanisms responsible for gen-
eralities and deviations in the thermal dependence of biological
traits. We compile data on both physiological and ecological traits
but focus on those central to species interactions (SI Appendix,
Table S1). The thermal response of interaction traits can be
strongly influenced by organismal behavior (22–25), so we focus
on how biological processes are executed (e.g., attack body ve-
locity, handling rate) and not on decisions (e.g., attack probabil-
ity, defense behavior probability) about whether to execute them.
Requiring each response to have nonzero measurements at
a minimum of four distinct temperatures that cover a range of at
least 5 °C yields 1,072 responses. Our ontology categorizes these
responses into 112 distinct traits that span levels of biological
organization from internal physiology to species interactions (Fig.
1 and Materials and Methods). Traits were measured in marine,
freshwater, and terrestrial habitats for 309 species of plants,
microbes, and animals.
Thermal responses are typically unimodal over the full tem-

perature range, but many studies only record measurements for
a restricted temperature range over which responses typically rise
or fall monotonically (3, 4, 8). Consequently, we analyze three
components of the thermal response: the initial increase in the
trait value with temperature (rise), its ultimate decrease at higher
temperatures (fall), and the transition between the rise and fall
components (unimodal) (SI Appendix, Fig. S1). After combining
pseudoreplicates (SI Appendix, SI Materials and Methods), this
process yields 374 rise, 70 fall, and 240 unimodal responses
(minimum temperature range was increased to 10 °C for unim-
odals to capture both the rise and fall components).

Results
Our analyses of these data reveal four novel aspects of the thermal
responses of biological traits.

Mean Activation Energy of Trait Rises. We find a general pattern in
the rise component, which covers the temperature range over
which organisms commonly operate under natural conditions (3,
26). The metabolic theory of ecology (MTE) suggests that the
Boltzmann–Arrhenius model from chemical reaction kinetics
can be used to predict the rise of many biological rates and times,
including systematic effects on metabolic rate (2–5, 8, 27–29).
According to the MTE, the scaling of a biological rate, R, with
body temperature, T, is

R ¼ Roe−E=kT [1]

where E is activation energy, k is Boltzmann’s constant, and Ro is
an organism- and state-dependent scaling coefficient. Inter-
specific studies have found that the activation energy, E, of most
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rises centers at or near 0.65 eV (2, 4, 18). However, activation
energies for important metabolic reactions vary from ∼0.2–1.2 eV
(4, 18, 27), with 0.65 eV being near the middle of this range. Some
variation around this value is therefore expected. This range cor-
responds to Q10 values (change in trait value when temperature is
changed by 10 °C) of about 1.31–5.13 when averaged over 0–40 °C
(SI Appendix, Table S2). Of the 374 intraspecific rises we analyze,
87% are consistent (R2 ≥ 0.5, P < 0.05) with the Boltzmann–
Arrhenius model. The mean activation energy, E, of these re-
sponses is 0.66 ± 0.05 eV [mean ± 95% confidence intervals (CIs)
used throughout our paper] (Fig. 2A). The 95% CIs include the
value of 0.65 eV reported across species for the MTE. The gen-
erality of this result across traits, taxa, trophic groups, levels of
organization, and habitats (Fig. 1) may be attributable to the in-
fluence of metabolic rate on a wide range of biological processes
(2, 30). Indeed, for rises that are significant, the vastmajority (88%)
of activation energies are between 0.2 and 1.2 eV, corresponding
to the range observed for metabolic reactions (4). Even at the

population level, where variance is largest, 80% of all activation
energies fall between this range (Fig. 2A). Of trait rises whose re-
lationship to metabolic rate is more obvious (i.e., rates, times),
a higher proportion (281 of 319) are significantly fit by the Boltz-
mann–Arrhenius model than those less clearly linked to metabo-
lism (41 of 55), such as conversion efficiencies, optimal muscle
strain, and angle of body turning during escape. Of all rises well fit
by the Boltzmann–Arrhenius model, about a quarter have residuals
with curvature, the vast majority of which are concave (downward).
Such deviations from the Boltzmann–Arrhenius model have been
observed previously in growth rate data (31, 32) (Discussion).

Distribution of Activation Energy for Trait Rises. We find systematic
deviations around the mean activation energy of 0.66 eV for rise
responses. The most noticeable deviation is strong right skewness
(Figs. 2 A and B and 3), which is consistent across levels of or-
ganization, taxa, habitats, and trophic groups. For unconstrained
random processes, this right skewness indicates deviations from

A

B

C

Fig. 1. Diversity of intraspecific temperature responses
analyzed in our study. Total number of thermal re-
sponse data for habitat, laboratory/field, level of bi-
ological organization, and thermy of predator or prey
(traits involving single species) or predator and prey
(traits involving interactions between two species) (ar-
tificial taxa are shown in SI Appendix, Table S3) aswell as
motivation (main text) (A), trophic group (B), and tax-
onomic group (C). B and C sum to more than 1,072 (the
total number of responses) because species interactions
include multiple species. Further details on trait cate-
gories and data sources are provided in SI Appendix.

A B C
Fig. 2. Analysis of activation ener-
gies, E, for rise responses and temper-
atures for optimum trait values, Topt.
(A) Mean E (±95% CI) of intraspecific
rise responses calculated from the
Boltzmann–Arrhenius model. Respon-
ses are grouped by habitat, motiva-
tion, level of biological organization,
laboratory or field measurements,
taxa, and trophic group. The vertical
dotted line marks 0.65 eV, as reported
for interspecific studies within the
MTE. (B) Relative activation energy
[median (E)−mean (E)] of intraspecific
rise responses bounded by the inter-
quartile range. Symmetrical distribu-
tions have an equalmean andmedian,
and thus a relative activation energy
of zero (vertical dotted line). Most
medians lie below zero, indicating
right skew. (C) Mean Topt (±95% CI) of
intraspecific unimodal responses. All
values in parentheses are sample sizes
with pseudoreplicates combined. Trait
categorizations, definitions, treatment
of pseudoreplicates, and data sources
are provided in SI Appendix.
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normality and random error (SI Appendix, SI Materials and
Methods). In principle, right skewness for the rises can be pro-
duced by a random diffusion process constrained by a reflective
boundary (33) at 0 eV. However, this mechanism does not explain
our results because (i) there should be more activation energies
close to the boundary (0 eV) than are observed (Fig. 3), indicating
the boundary effect is either nonexistent or negligible, and (ii)
different degrees of skewness, including lack of skewness, are
observed in certain traits (Fig. 2B) (18). The right skewness we
observe therefore represents a real and unexplained bio-
logical signal.
Independent of mechanism, this right skewness means that the

majority of trait responses have activation energies below 0.66
eV (median of 0.55 eV) (Figs. 2B and 3). The MTE does not
predict and cannot currently explain why the distribution of ac-
tivation energies is right-skewed, and thus why the majority of
rise responses have activation energies lower than 0.65 eV.
Therefore, the MTE needs to be assessed to determine whether
or not it can be extended to explain the full form of the distri-
bution of activation energies and its biological consequences.
One possible mechanism driving skewness in rise activation

energies is trait motivation. We define autonomic traits as those
that largely act below the level of consciousness, such as basal
metabolic rate, whereas somatic traits are largely under conscious
control (34). We further classify somatic traits as negative (de-
fense or movement away from a stimulus), positive (consumption
or movement toward a stimulus), or voluntary. Body velocity, for
example, can be negative (e.g., escape body velocity), positive

(e.g., attack body velocity), or voluntary (e.g., voluntary body ve-
locity). Analysis of trait rises reveals that negative motivation traits
have significantly lower mean activation energies (0.40 ± 0.05 eV)
than do positive (0.69 ± 0.09 eV), voluntary (0.64 ± 0.12 eV), or
autonomic (0.76 ± 0.08 eV) traits (Figs. 2A and 3). Because neg-
ativemotivation traitsmake up 23.4%of all rises and typically have
lower activation energies, they contribute substantially to the right
skewness observed across taxa and habitats (Fig. 3).
This difference in activation energies means that traits with

negative motivation are less sensitive to temperature than traits
that are positive or voluntary, and thus supports the hypothesis
that stronger selection pressure on prey to escape capture and
death [the life-dinner principle (35–37)] results in maintenance of
nearly optimal performance across a range of temperatures. That
is, although it is energetically costly to maximize effort at low
temperature (3), individuals under attack may do so for survival.
Prey presumably increase their performance at lower temper-
atures rather than decrease their performance at higher tem-
peratures, which would more likely result in being captured by
a predator. This differential performance is consistent with
physiological limitations (38) or shifts in motivation at low vs.
high temperatures (22–25). Moreover, diurnal and seasonal var-
iation in temperature could allow the evolution of differences in,
for example, the thermal response of attack and escape velocities
needed for an individual to alternate between being both a
predator and a prey.
By focusing only on body velocities, we can directly test the life-

dinner principle. Consistent with the principle, rises for escape
body velocity (0.39 ± 0.05 eV) have lower activation energies than
do voluntary velocities (0.52 ± 0.09 eV). Moreover, we can
quantify how much faster the mass-corrected coefficient (Ro in
Eq. 1) at 20 °C for escape body velocity (2.61 m/s) is than for
voluntary body velocity (0.31 m/s) (SI Appendix, SI Materials and
Methods). These values represent averages across diverse taxa and
are qualitatively similar to previous results for lizards that do not
examine thermal effects (39, 40). For this analysis, we only in-
cluded responses for which the individual was clearly and contin-
ually moving at a nearly constant velocity, thus precluding other
effects and explanations related to behavior and shifts in motiva-
tion or strategy (Materials and Methods). Because escape or attack
velocity is largely anaerobic and is governed by different bio-
chemical pathways than voluntary velocity (41, 42), it may expe-
rience different selection pressures, contributing to differences in
activation energies for thermal responses.
ANOVA of all rises shows that level of organization is also

a strong predictor of mean rise activation energies (SI Appendix,
Table S4), with internal (0.65 ± 0.13 eV) and individual (0.54 ±
0.05 eV) having a much lower mean E than population (0.98 ±
0.15 eV) (Fig. 2A). Fig. 4 shows rise activation energies for three
major taxonomic lineages—terrestrial insects, fish, and lizards—
categorized by level of organization. For all taxa, mean rise ac-
tivation energies averaged across all traits are, again, very close
to 0.65 eV (Fig. 4). Although data are too sparse to draw general
conclusions, activation energies of trait rises are more variable
and tend to increase from internal and individual traits to pop-
ulation and species interaction traits for insects and lizards (Fig. 4
and SI Appendix, Table S4).

Trait Falls. Few data or theories exist for the decline of trait per-
formance at higher temperatures, and the data that do exist are
often not of high quality. Protein degradation is considered
a likely mechanism for falls of some traits (7, 38, 43), and in those
cases, activation energy can be interpreted as the energy of deg-
radation processes. Of the 70 fall responses we analyze, the mean
E of the 31 significant falls is 1.15± 0.39 eV and themedian is 0.65
eV, indicating strong right skewness as found for trait rises. Falls
have much higher activation energies than rises, consistent with
the left skew typically observed in temperature responses (3, 5, 7,
26). We also find that several trait falls are conversion efficiencies
(SI Appendix, Table S3), contradicting the common tacit as-
sumption of their temperature invariance (2, 9, 30, 44).

Fig. 3. Histograms of intraspecific activation energies. Gray columns are the
total number of rise responses, red columns are the subset of these re-
sponses that correspond to negative motivation, and green columns are the
subset of these responses that correspond to positive motivation. (Insets)
Examples of responses of traits corresponding to positive (green) and neg-
ative (red) motivations, respectively. OLS regressions based on the Boltzmann–
Arrhenius model (Eq. 1) were fitted to the rise component of each response.
Trait values are normalized relative to the maximum trait value in each data
series to present multiple responses on the same scale. Values of E for insets
are mean values for all negative and positive motivation traits. Escape body
velocities (m/s) (negative motivation) of the northern desert iguana (light
blue circle, E = 0.96 ± 0.52 eV), western fence lizard (brown triangle, E = 0.63
± 0.28 eV), African clawed frog (dark blue diamond, E = 0.25 ± 0.06 eV), and
wandering garter snake (yellow square, E = 0.36 ± 0.14 eV) are shown.
Consumption rates [consumed prey/(predator * s)] (positive motivation) of
river perch preying on phantom midge larvae (light blue circle, E = 0.99 ±
0.25 eV), back-swimmer preying on culex mosquito larvae (brown triangle, E
= 1.09 ± 0.46 eV), dampwood termite feeding on eucalyptus tree (dark blue
diamond, E = 0.65 ± 0.40 eV), and atlantic oyster drill preying on eastern
oysters (yellow square, E = 1.18 ± 0.83 eV) are shown. Trait definitions, data
fitting methods, and data sources are provided in SI Appendix.
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Optimal Temperature and Unimodal Responses. For the 240 unim-
odal responses, the mean temperature at which optimal trait
values occur (Topt) is 25.3 ± 1 °C. Although temperature fluc-
tuates more in terrestrial habitats than in freshwater or marine
habitats, we find no evidence that Topt is more variable for ter-
restrial taxa (Fig. 5). Our results cannot be attributed to factors
such as the more homogeneous thermal landscape of aquatic
habitats (45–49), because most of our data were measured in
experimental arenas with constant temperatures (Materials and
Methods). Therefore, organisms were not able to thermoregulate
behaviorally, effectively eliminating differences between body and
ambient temperature. Habitat is by far the strongest determinant
of meanTopt (Figs. 2C and 5 and SI Appendix, Table S5). Traits for
terrestrial organisms have a higher meanTopt (30 °C) than those in
freshwater (21 °C) or marine organisms (19 °C). These differences
correspond to environmental temperatures (50), indicating a
matching between environmental temperatures and those for
near-optimal performance (3, 51).

Discussion
Our ecoinformatics analysis illuminates previously unrecognized
generalities and deviations in how biological systems respond to
temperature. We show that almost 90% of our intraspecific rise
responses are well fit by the Boltzmann–Arrhenius model. Across
all traits, the mean activation energy is 0.66 eV, close to the value
of 0.65 eV reported for interspecific responses and indicating that
metabolic rate potentially affects a wide range of biological pro-
cesses (2, 4, 8, 28, 30). Nonetheless, we find systematic and sub-
stantial patterns in the variation of activation energies around this
canonical value, including persistent right skewness in the distri-
bution. Notably, the median value of activation energies is 0.55
eV, indicating that most activation energies are lower than 0.65
eV. Our results highlight limitations in the precision, power, and
utility of the MTE as it currently stands. We conclude that the
MTE requires reassessment and modification to discover whether
it can explain these novel features of thermal responses.
The persistent right skewness in the distribution of activation

energies raises important questions about whether to interpret
the mean or median as the most biologically relevant measure.

We expect that processes involving individuals or single species
may be more affected by the median, because most individuals
and species will have activation energies close to this value. In
contrast, ecosystem processes may be determined more by the
mean value because they represent an average over many indi-
viduals, species, and processes.
Folding the Boltzmann–Arrhenius model into a more realistic

unimodal model (7, 13, 52) should prove insightful in this regard
and may help to explain recently observed deviations of growth
rate data fit to the model, including effects of the values and range
of chosen experimental temperatures (32). Further elucidation of
these effects requires more high-quality experimental data.
Detailing the response of traits over the entire temperature range
has been central to understanding and making predictions about
the effects of climate change (53). We therefore encourage
experimentalists to measure the response of a greater diversity of
traits over the full temperature range, thus allowing character-
ization of the entire unimodal response.
The right skewness we observe in the distribution of activation

energies persists across nearly all trait categories. Detailed ana-
lyses of these and similar patterns suggest dominant selection
pressures and novel biological mechanisms. Differences between
negative and positive motivation can be explained by a thermal
version of the life-dinner principle (35–37), which predicts sys-
tematic differences in the thermal responses of organisms when
they are acting as either a predator or a prey. Collecting more
high-quality data for the thermal dependence of attack velocity is
a high priority for more sensitive tests of the life-dinner principle.
We find that activation energies for rises are generally more

variable and tend to increase as one moves from internal and
individual traits to population and species interaction traits. This
increase represents enhanced thermal sensitivity of populations and
species interactions, potentially reflecting density or frequency de-
pendence. These patterns probably have important consequences
for species interactions and community stability, and their identi-
fication suggests that scaling constraints can be shifted or relaxed by
evolutionary or behavioral processes.Data onmultiple traits within
single species will also help to resolve our understanding of how
temperature influences the interaction and integration of traits
across different levels of biological organization (54). Investigation

Fig. 4. Mean activation energies, E (±95% CI), of in-
traspecific rise responses calculated using the Boltzmann–
Arrhenius model are categorized by different levels of or-
ganization for terrestrial insects (A), marine and freshwater
fish (B), and terrestrial lizards (C). The vertical dotted lines
mark 0.65 eV reported for interspecific studies (2, 4, 18). All
values in parentheses are sample sizes with pseudor-
eplicates combined. Trait definitions, treatment of pseu-
doreplicates, and data sources are provided in SI Appendix.
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of the distribution of activation energies at the lowest level of or-
ganization, biochemical reactions, may reveal baseline variation
that could be amplified across biological levels. For example, the
distribution of activation energies based on a small sample of 11
biochemical reactions (table 3.1 in ref. 27) is right-skewed and may
also contribute to the pervasive right skewness observed in our data.
Our trait ontology is a first categorization of thermal response

curves and allows us to identify novel patterns and propose new
mechanisms, such as right skewness and the life-dinner principle.
Alternative categorization of the traits in our database will likely
reveal other biological mechanisms. Because life evolves and oper-
ates across a complex thermal landscape, it is essential to synthesize
empirical knowledge and to deduce generalmechanisms for shifts in
the thermal responses of biological traits. Our work is an important
step along this path and should aid research on how species, com-
munities, and ecosystems respond to changes in temperature.

Materials and Methods
Data Acquisition. We searched the literature for studies that measured the
intraspecific temperature response of biological traits, with a focus on those
central to species interactions (main text). We found 273 data sources, in-
cluding journal articles, published reports, and books. When possible, we
contacted authors directly to obtain raw data. Otherwise, we extracted data
directly from tables and text or from figures using DataThief (55). This process
yielded 2,445 intraspecific temperature responses and 20,394 data points. We
primarily selected studies where environmental conditions, such as pre-
cipitation, light, and prey density, were either controlled or standardized.
Consequently, most responses (92.5%) were measured in the laboratory,
where body temperature of ectotherms was known to be close to ambient
(based on direct measurement and extended times at test temperatures).
The 192 sources from which data were described and analyzed in this paper
are listed in SI Appendix, Table S6 and in the rawdata in SI Appendix, Table S3.

Trait Ontology. We constructed an ontology that allowed us to classify bi-
ological traits in a way that permits subsets of data to be easily isolated and

analyzed, and that defined categories of data closely tied to ecological
measurements, intuition, and mechanisms. Construction of a universally
accepted trait ontology is currently not achievable, and although our on-
tology (SI Appendix, Table S1) captures important patterns in the data,
categorization of traits in other ways will likely reveal additional biological
mechanisms. In this paper, we describe two main components of our on-
tology: level of biological organization and trait motivation. Levels of bi-
ological organization we define are internal (processes internal to the
organism), individual (processes at the level of individual organisms that
include mechanical interactions with the external environment), population
(processes for a group of conspecific individuals), and species interaction
(processes involving interaction between two or more species). Trait re-
sponse can be strongly influenced by the motivation of an organism. For
example, how fast an organism moves through the landscape depends not
only on its morphological capacity and how this capacity interacts with the
environment but on its motivation (36, 39, 40). We therefore also categorize
trait motivation, which we define in the main text. SI Appendix, Tables S1
and S3 detail the classification of each data series into this ontology.

Unit Conversions. Definitions and measures of many traits are inconsistent
throughout the literature, so we identified equivalent traits and converted
them to comparable definitions and units. All times were converted to rates
to ensure a single currency. For consistency, and because of the counterin-
tuitive nature of many mass-specific traits (e.g., detection distance), mass-
specific units were converted to per number of individuals (i.e., per capita).
Activation energies were the same whether traits were expressed per mass or
per capita. Scaling coefficients were mass-corrected. Further discussion of
intercept coefficients and their analysis, and a description of how species wet
mass was estimated, are provided in SI Appendix, SI Materials and Methods.

Data Quality and Classification. To be included in our analysis, trait responses
must have had (i) nonzero measurements at four or more distinct temper-
atures (thermal response models require a minimum of two free parameters)
and (ii) a temperature range spanning at least 5 °C (it is difficult to differ-
entiate statistically between linear and Boltzmann–Arrhenius model fits over
smaller temperature ranges). For responses that satisfied these two criteria,
we used ordinary least squares (OLS) regression to fit quadratic functions and
then classified responses based on statistically significant coefficients as being
rising, falling, or unimodal. For responses not fit well by a quadratic function,
we calculated the correlation coefficient to categorize it as either rise or fall,
or if our criterion for biological significance (R2 ≥ 0.5, P value < 0.05) was not
met, it was excluded (8.3%of responses). Because unimodal responses include
both rise and fall components, the minimum temperature range for inclusion
was doubled to 10 °C for unimodals. Responses classified as being unimodal
were further subdivided into rise (fall) components by iteratively removing
trait measurements at upper (lower) terminal temperatures until mono-
tonicitywas observed in a contiguous subset of the response (SI Appendix, Fig.
S1). After each data point removal, we reassessed whether a quadratic or
cubic model fit better than a linear model. The model selection was done
using the small-sample Akaike Information Criterion (AIC) value (56). In cases
where only four points remained after removal of terminal points, an F test
was used instead. The original unimodal responses were retained after their
monotonic portions were extracted. Thus, we obtained three separate cate-
gories of temperature responses: rise (802), fall (239), and unimodal (536).
These numbers include pseudoreplicates (SI Appendix, SI Materials and
Methods), and rise and fall categories include responses that were extracted
from the unimodal set. The MATLAB (MathWorks) code used for this pro-
cedure is available on request.

Data Analysis of Monotonic Rise and Fall Temperature Responses. We assessed
fits and calculated E of both trait rises and falls for the Boltzmann–Arrhenius
model in the same way. The fit of each response to the Boltzmann–Arrhenius
model (Eq. 1) was assessed by OLS regression of log-transformed trait values
on the reciprocal of temperature (in Kelvin). OLS regression was appropriate
because temperatures are typically measured with much less error than trait
values. The Boltzmann–Arrhenius model predicts that the transformed data
would be best fit by a straight line. We considered the Boltzmann–Arrhenius
model to fit a response if R2 ≥ 0.5 and the F test P value is <0.05. These
relatively liberal criteria allowed us to use a larger set of responses to ana-
lyze deviations from the Boltzmann–Arrhenius model. We assessed how
many responses showed concave upward or downward deviations by ana-
lyzing the residuals of the fits from above. Using OLS regression, we fit the
residuals with a quadratic model using the same R2 and P values as above to
determine significance. The direction and magnitude of the curvature of
residuals were recorded (values of the coefficient of the quadratic term). We

Fig. 5. Histograms of Topt categorized by habitat. The optima at 15 °C, 20 °C,
25 °C, 30 °C, and 35 °C likely represent overrepresentation of these tem-
peratures in experimental studies. Data sources are provided in SI Appendix,
Tables S3 and S6.
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could not use the small-sample AIC here to differentiate between a quadratic
and linear fit to the residuals because most of our data consist of four points,
for which the small-sample AIC cannot be calculated. To estimate the acti-
vation energies of trait rises, we calculated both ordinary and weighted
averages of measured activation energies, E. Weights were calculated as the
ratio of the total number of data points in each response to the total number
of data points in all responses within a category (e.g., trait, taxon, habitat,
level of organization, motivation). Weighted and unweighted 95% CIs were
calculated for the respective means. We also calculated medians, skewness,
and quartiles of the E in each category.We used ANOVA to detect differences
in mean E between categories of rise responses, such as level of organization
or habitat (SI Appendix, Table S4), but not for falls because of an inadequate
sample size. We also tested whether the distribution of intercept coefficients
(Eq. 1) was normal (SI Appendix, SI Materials and Methods).

Data Analysis of Topt. For unimodal responses, we estimated Topt as the
temperature at which the maximum trait value was recorded. For responses
with multiple maximal values (within 5% of each other), we calculated their
average temperature (SI Appendix, SI Materials and Methods). As described
above for activation energies of rise and fall responses, values of Topt across
trait categories were compared using ANOVA (SI Appendix, Table S5).
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