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The role of body size as a key feature determining the biology

and ecology of individual animals, and thus the structure and

dynamics of populations, communities, and ecosystems, has

long been acknowledged. Body size provides a functional link

between individual-level processes such as physiology and

behavior, with higher-level ecological processes such as the

strength and outcome of trophic interactions, which regulate

the flow of energy and nutrients within and across ecosystems.

Early ecological work on size in animals focused on

vertebrates, and especially mammals. More recent focus on

invertebrates, and insects in particular, that spans levels of

organization from individual physiology to communities, has

greatly expanded and improved our understanding of the role

of body size in ecology. Progress has come from theoretical

advances, from the production of new, high-resolution

empirical data sets, and from enhanced computation and

analytical techniques. Recent findings suggest that many of the

allometric concepts and principles developed over the last

century also apply to insects. But these recent studies also

emphasize that while body size plays a crucial role in insect

ecology, it is not the entire story, and a fuller understanding

must come from an approach that integrates both size and non-

size effects. In this review we discuss the core principles of a

size-based (allometric) approach in insect ecology, together

with the potential of such an approach to connect biological

processes and mechanisms across levels of organization from

individuals to ecosystems. We identify knowledge gaps,

particularly related to size constraints on insect movement and

behavior, which can impact the strength and outcome of

species interactions (and especially trophic interactions) and

thus link individual organisms to communities and ecosystems.

Addressing these gaps should facilitate a fuller understanding

of insect ecology, with important basic and applied benefits.
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Introduction

‘In scaling, as in so many other areas of biology, we know
far more about homeotherms than about poikilotherms or
unicells. Since most organisms are not homeotherms, a
great deal of work is required before our knowledge
would be proportional to animal abundance.’ [Peters,
1983]

The body size of any organism strongly constrains many
aspects of its physiology and ecology [1–5]. In insects, size
influences their metabolic rate [6,7!], their individual
growth rate [83] and stoichiometric properties [8], how
fast they move [9–11], how often they encounter prey
[12,13!!] and how many prey they consume [14!!], and a
huge suite of other traits central to their daily lives
[1,5,15]. Because size is so important for individuals,
patterns in the size distributions of groups of insects have
crucial influences on the structure and function of higher
levels of biological organization, such as populations,
communities, and ecosystems (e.g. by affecting decom-
position, primary productivity and carbon cycling;
[16,17]). Body size is also easy to measure directly, or
at least estimate, while at the same time can be used as a
proxy for many other physiological and ecological traits
[18]. Thus, a size-based understanding of insect ecology
should be both attainable and useful, with significant
basic and applied benefits.

To date, studies of body size in ecology have focused
primarily on vertebrates [1–3,4] and vascular plants
[19,20], although more recent work that focuses on insects
(and, more generally, on invertebrates) addresses this
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imbalance (e.g. [6,15,21,22,23,24]). The high taxonomic,
ecological and functional diversity of insects, and the fact
they span roughly nine orders of magnitude in mass
(Figure 1) and are common in many of Earth’s ecosys-
tems (especially on land and in freshwater), make them
an excellent study group to investigate size-related pat-
terns and processes in ecology. To separate our paper
from two excellent recent reviews [15,25!!] we pay
particular attention to how size influences insect move-
ment and behavior, which impacts how insects forage and
thus has significant implications for the strength and
outcome of species interactions, and especially trophic
interactions [12,13!!,26,27]. At the same time, quantify-
ing behavior and movement in accurate and precise ways
is becoming easier due to the development of novel

automated methods [28!!]. A more mechanistic under-
standing of species interactions should enable linkage of
the ecology of individuals to higher levels of ecological
organization [25!!]. This research area, at the intersection
between behavioral (i.e. movement ecology; [29]) and
community (e.g. food web ecology; [25!!,30]) ecology, is
characterized by significant advances in recent years
on both empirical and theoretical fronts that is resulting
in a deeper understanding of the role of body size in
insect ecology. For example, the integration of allometric
scaling with visual acuity and environmental drivers
has furthered our understanding of the mechanisms
that influence prey encounter and consumption rate
[12,13!!,26]. The historical focus of size-based research
on vertebrates and plants means that throughout our
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review we draw strongly from literature that is not insect
focused, which is justified given the apparent universali-
ty of many allometric principles across domains of life
[1,4,5,15,25!!].

Key recent developments in the field of
allometry
Recent years have seen significant moves forward on a
number of research fronts, but undoubtedly some of the
most important advancements have come in the devel-
opment of a predictive theoretical framework about size
effects in ecology, which is mechanistically based on well-
understood biological and physical mechanisms. Perhaps
most impactful has been the Metabolic Theory of Ecolo-
gy (MTE), which suggests that the power–law relation-
ship between body size and metabolic rate that persists
across taxa and ecosystems arises because of the ubiqui-
tous fractal structure of transportation networks within
organisms [5,31]. MTE aims to predict the structure and
function of higher levels of biological organization (e.g.
populations, communities, ecosystems) from the level of
an individual organism, with a particular focus on meta-
bolic rate [5,17]. In MTE, individual body size and body
temperature are considered key drivers of many ecologi-
cal processes, via their direct effects on metabolic rate
([5,6]; also see Figure 2a), with subsequent effects on
trophic [27,32,33!!] and other types of species interac-
tions and thus communities and ecosystems [5,17].
Thought to also be related to the allometry of metabolic
rates, size-abundance scaling models characterize the
commonly observed pattern of most ecological commu-
nities comprising many small and few large organisms
([3,34,35!]; see Figure 2b). This community-wide pattern
has important implications for trophic interactions, as
individual consumers are more likely to encounter the
more abundant smaller resources they often feed on [36],

a pattern which appears crucial for the stability of inver-
tebrate predator–prey interactions and food webs
[14!!,37]. The validity and generality of the simple yet
powerful MTE remains hotly debated [38,39], and in-
deed recent analyses of insect data suggest that alterna-
tive models might outperform MTE in explaining certain
empirical patterns ([7!,21]; but see [40]). One of these
alternative models is the cost of locomotion rooted in bio-
mechanical principles [7!,41], which stresses the impor-
tance of locomotion for insect metabolism, physiology
and ecology (see below).

Owing to technological limitations in the past (e.g. size of
devises for bio-logging; [42]), available empirical studies
of allometric scaling in movement ecology (e.g. migra-
tion) were almost exclusively restricted to vertebrates
([43,44,45!!]; also see Figure 2c). By contrast, there are
numerous studies on the size scaling of insect movement
from laboratory-based comparative physiology and mor-
phology (e.g. [46,47]), while more recent studies address
insect-specific patterns across larger spatial and temporal
scales (e.g. allometric effects on dispersal in butterflies;
[48]). Moreover, it appears that for insect movement, and
its implications for higher-level ecological processes, the
allometry of morphology (and not just total body size) is
especially important (e.g. wing size-body size relation-
ships; [49]). To date, our understanding of the energetic
implications of these relationships are also unclear. Al-
though small animals require more energy to travel a
given distance relative to their body mass [50], more
recent work suggests that maximum migration distance
should be similar when considered in relation to body
length, which does not scale linearly with total mass
[45!!]. Additionally, the diverse modes of insect move-
ment (e.g. flying, swimming, running; Figure 1) provide a
unique opportunity to explore additional size-related
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Relationship between body mass and the example traits: metabolic rate (a), abundance (b) and home range (c). Different phylogenetic groups (a)
and functional groups (b and c) show variation in their scaling with body mass. Figures reproduced from [35!] (a and b) and [43,44] (c). Data for (a)
and (b) are for 870 species of litter and soil invertebrates from a large-scale biodiversity study in Germany, data for (c) are from 279 mammal
species.
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constraints on dispersal, with potentially crucial implica-
tions for meta-community structure [51!]. Most prior
studies concentrate on larger scale movement, such as
dispersal and migration, while research addressing the
scaling of more local traits related to individual behavior
and foraging, which, although important for species inter-
actions, is largely absent for insects [52]. Thus, while
research on the allometry of insect movement and forag-
ing behavior is occurring (e.g. [42]), more is required to
obtain a clearer picture of the mechanistic basis of a
phenomenon already well recognized: body size is key
in shaping the strength and outcome of species interac-
tions, and especially trophic interactions.

Body size and trophic interactions
The role of body size has long featured prominently in
studies of trophic interactions [24,36,53,54], and integra-
tion of energetic considerations into the picture has
allowed ecologists to better understand the pivotal role
of size for consumer–resource dynamics, and food webs
more generally [55–58]. For instance, in a recent study on
forest soil invertebrates, Ehnes et al. [35!] showed that
accounting for the efficiency of energy transfer between
trophic levels could explain deviations from the basic
assumptions of MTE and mass-abundance rules more
generally. Likewise, Ott et al. [8] recently showed that
allometry interacts with the stoichiometry of the basal
resource to determine the distribution of biomasses across
the food web populations. From this and other related
work it is becoming clearer that explaining the outcome
and strength of trophic interactions requires information
in addition to body size, which may or may not relate to
body size in simple ways.

One area that is receiving a lot of current attention is the
foraging behavior of consumers, which many authors now
see as crucial to trophic interactions [13!!,27,30,57,59].
For example, the hump-shaped relationship observed
between attack rates and body size for a wide range of
animals, including terrestrial (e.g. [14!!]) and aquatic
insects (e.g. [12]), may be partly explained by foraging
behavior. In their analysis of functional responses and size
selectivity of notonectid predators and their daphnid
prey, Gergs and Ratte [12] used video tracking experi-
ments to disassemble the attack rates of classical func-
tional responses into encounter rates and success rates.
They found that while encounter rates increased with
body size following a quadratic relationship, success rates
were characterized by a hump-shaped relationship [12].
Encounter rates are assumed to be driven by the con-
sumer’s detection ability (related to their foraging behav-
ior) following allometric relationships [60], which have
successfully been used to build an allometric vision and
motion model of optimal foraging [13!!,26]. Interestingly,
a meta-analysis of vertebrate studies suggests these de-
tection probabilities are driven by temporal perception
which, in turn, is related to body size, with smaller

animals showing a higher temporal resolution of the
sensory system [61]. Rigorous tests of the allometric
relationships of detection probabilities and the relation
to temporal perception and foraging decision in insects
remain elusive. The hump-shaped relationship in attack
rates [14!!,30] or in capture success [12] might also be
driven by the asymmetry between higher maneuverabili-
ty in small prey and maximum foraging speed in large
predators, as has been explored in fish [62]. Again, we are
not aware of comparable research on insects. A detailed
analysis of these relationships should also concentrate on
burst speed and acceleration potential, which are presum-
ably important for trophic interactions [47,63].

In the context of trophic interactions, functional morphol-
ogy and the intertwined consumer foraging mode have
been proposed as one of the main concepts that explains
why a trophic interaction occurs between any given pred-
ator–prey pair. This implies a match between the ‘tools’
available for a predator to capture and overcome a partic-
ular prey, and the ‘tools’ available for a prey to evade
capture from that particular predator [25!!,64,65,66!!].
Integrating these traits into an allometric framework
appears to us a useful advancement of current food web
models, where a considerable portion of the variation in
predator–prey interactions remains unexplained by more
simple size-based approaches (examples include [67] for
terrestrial predators; [66!!] for aquatic predators). Prior
attempts to connect functional morphology and allometric
scaling for movement relationships have focused on dis-
persal [68] and migration [49], but similar research on
trophic interactions is required. For instance, flying per-
formance in dragonflies not only depends on total body
size but also wing morphology (i.e. the morpho-allometric
relationship between body size and wing size; [49]), with
important influences on sexual selection and optimization
of different flying tasks [49]. Similarly, functional mor-
phology is key to understanding non-body size related
differences in locomotion performance in terrestrial [50]
and aquatic [69] insects: where on land the effective
length of body appendages responsible for movement
accounts for most of the variation [50], the relationship
for aquatic movement seems to be more complicated [69].
Hence, given their diverse modes of living and their large
range of body size (Figure 1), investigating these relation-
ships in insects would seem useful for further understand-
ing bio-mechanical constraints on foraging behavior [25!!].
Given each of these considerations, it now seems feasible
to extend current scaling frameworks to integrate allome-
tric scaling relationships across levels of organization, from
the physiology and morphology of individuals to trophic
interactions and ultimately to the energetics of entire
communities and ecosystems [65,66!!].

Future directions
Globally, insects are an important functional component
of terrestrial and freshwater systems, often with strong
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economic and cultural importance for humans [70].
By integrating body-size related information such as
physiological constraints (as characterized by the
MTE — [5,17] — or competing approaches — [7!,21]),
together with body-size relationships for consumer–re-
source pairs [36] and entire food webs [24,71], ecologists
now have a better understanding of ecosystem stability
and functioning. Thus, patterns in insect body size dis-
tributions, together with intra-specific and inter-specific
allometric relationships, are important for a wide range of
basic and applied questions. For instance, allometric
effects can explain how predator loss in soil-litter systems
affects crucial ecosystem functions such as litter decom-
position and nutrient cycling [54]. Moreover, intraspecific
size distributions apparently have far-reaching conse-
quences at the community level [16,72], but most often
these data are not available. Therefore, there is a need for
continued development of highly-resolved empirical
datasets, such as population body size distributions for
multiple interacting species ([23,79]) or body-mass varia-
tion across various levels of insect phylogeny [15]. Insect-
specific analyses of subsets of existing data bases for
species interactions (e.g. [32,33!!]) are a logical next step.
Future research on individual-level interactions of insects
from a diverse range of ecosystems might then shed light
on important ecosystem mechanisms, providing a deeper
understanding of how crucial ecological functions are
organized and maintained. One particularly useful ap-
proach appears to be novel automated methods [28!!],
which should help elucidate the mechanistic link be-
tween individual-level, morphologically and physiologi-
cally constrained behavior and higher levels of ecological
and biological organization.

A generalized version of allometric theory needs to be
developed that is able to account for apparent non-size
related variation, by incorporating additional behavioral
and functional morphological traits. The first steps toward
this goal have already been made in quantitative studies
of food webs and other ecological networks: for instance,
Naisbit et al. [73] used a ‘two-dimensional’ approach
where phylogenetic relatedness could explain food-web
structure better than body size alone. In addition, Eklöf
et al. [65] showed that the structure of different types of
ecological networks are best explained by models that
incorporate approximately three to four additional traits
(e.g. habitat type, mobility, phenology, phylogenetic in-
formation; [65]) together with body size. Here again,
functional morphology was explicitly highlighted (e.g.
fruit size and bill gape for frugivorous birds; [65]). Addi-
tional traits and relationships that should be incorporated
into an extended framework of ecological allometry
in insects include environmental temperature (e.g.
[5,27,32,33!!]), the degree of hunger of predators [74]
and their experience with handling particular prey [75],
the stoichiometry of food resources [76], and even the
individual ‘personality’ of predators [77,78!]. Thus, a full

and mechanistic understanding of insect ecology will only
be achieved by approaches that integrate both size and
(apparent) non-size effects [25!!]. We particularly encour-
age approaches addressing the link between allometric
constraints on behavior with functional morphology and
foraging relationships to gain a better understanding of
the processes that shape the typical hump-shaped rela-
tionship between predator–prey size ratios and capture
success [12,14!!,30]. Although this topic has been inves-
tigated with vertebrates (e.g. [60–62]), a similar integra-
tion of such relationships is required for insects and other
invertebrates.

Future research at the intersection between insect be-
havioral and community ecology should therefore em-
brace, and ultimately integrate, these approaches to
establish a new framework that links distinct layers of
biological and ecological organization.
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