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Abstract: Ongoing and projected changes in climate are expected to alter discharge and water
temperature in riverine systems, thus resulting in degraded habitat. Climate adaptation management
strategies are proposed to serve as buffers to changes in air temperature and precipitation, with these
strategies potentially providing relatively stable protection for flow and thermal regimes. Using
a hydrologic and water temperature modeling approach in the Meramec River basin in eastern
Missouri, U.S.A., we examined the ability of forested riparian buffers to serve as a useful climate
adaptation strategy against ongoing and projected changes in climate. We developed a multi-scale
approach using Soil and Water Assessment Tool (SWAT) hydrologic and water temperature models
as well as a Stream Network Temperature Model (SNTEMP) with different amounts of simulated
riparian vegetation to estimate streamflow and water temperature variation within the Meramec
River basin under both contemporary and projected future climate conditions. Our results suggest
that riparian buffers offer benefits to mitigating increases in water temperature due to shading effects;
however, patterns in discharge did not vary substantially based on simulations. From an ecological
perspective, the addition of riparian buffers is also projected to reduce the impacts of climate change
on Smallmouth Bass (Micropterus dolomieu) by decreasing the number of days water temperatures
exceed the thermal tolerance of this species.

Keywords: climate change; hydrology; water temperature; Smallmouth Bass; hydrologic model;
water temperature model; SWAT; SNTEMP

1. Introduction

Free-flowing rivers represent an important but increasingly rare resource for the con-
servation of freshwater biodiversity. The ecological importance of these unimpounded
systems is realized, in part, through the provisioning of relatively natural flows and thermal
characteristics, which are fundamental drivers regulating lotic ecosystems [1,2]. When
rivers are impounded, flows and thermal characteristics are altered, with well-documented
effects on physical and biological processes in these systems [3–5]. In particular, flow vol-
ume (discharge) and seasonal variability in flows influence species diversity and ecosystem
functioning [1,6,7]. Species richness and diversity as well as ecosystem productivity are
also regulated by the amount of (thermal) energy in a system [2,8], and the exceedance
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of temperature thresholds can result in reduced performance and mortality of freshwater
taxa [9,10], as well as alterations to their ecological interactions [11].

While free-flowing rivers and intact vegetated landscapes contribute to the relatively
long-term stationarity of hydrologic processes and riverine thermal regimes, ongoing and
projected changes in climate are expected to perpetuate recently evident non-stationary
patterns in discharge and water temperature [12–15]. These directional changes in envi-
ronmental characteristics of rivers will presumably move free-flowing systems away from
their natural state, with results that should be analogous to the impacts of impoundments
on riverine systems. Climate adaptation strategies are management approaches designed
to serve as a buffer to changes in air temperature and precipitation by increasing a system’s
resilience to climate change [16]. However, there is a limited quantitative understanding of
how contemporary management practices may buffer against projected changes in climate
in riverine systems.

A recently discussed nature-based climate adaptation strategy for riverine systems is
the addition of woody vegetation to riparian areas [17]. Re-establishing natural riparian
habitats can mitigate against extreme flows and water temperatures, thus preserving
discharge and thermal characteristics of free-flowing rivers [18,19]. Riparian vegetation
also supports the maintenance of natural geomorphological conditions as well as reduces
sediment and point and non-point source pollution reaching rivers, e.g., [20,21]. Although
recommendations for effective buffer sizes vary, Sweeney and Newbold [18] suggest that a
minimum of 30 m of the natural riparian buffer is needed to provide protection against
thermal alterations, while the buffer width necessary to mitigate against increased surface
runoff can be slightly lower. The type of vegetation in riparian zones is also critical, with
forested areas generally providing the greatest benefits to the maintenance of in-stream
processes [22,23].

While the majority of research on riparian buffers has focused on the contemporary
physical and biological benefits of a forested riparian zone, recent attention has been
given to the need for intact riparian zones in a changing climate [17,21]. Because changes
in climate have the potential to increase water temperatures, the frequency of extreme
discharge events, and alter contaminant transport processes [14,24,25], intact forested
riparian zones may serve as a valuable climate adaptation management strategy. However,
assessment of these pre-emptive management approaches is largely dependent on model-
based projections of future hydrological and thermal processes in riverine systems.

The purpose of this study is to provide a novel perspective on the potential benefits
of forested riparian buffers as a climate adaptation strategy for maintaining natural flow
and thermal regimes in free-flowing river systems as climate changes. We use hydrologic
and water temperature models to project the potential effects of adding riparian buffers on
streamflow and water temperature at a basin scale across the Meramec River basin (MRB) in
eastern Missouri, USA. We also investigate the potential influence of canopy shading from
riparian buffers on water temperature at the stream reach scale under both contemporary
and future climate conditions. To highlight the potential ecological significance of riparian
buffers across the basin and provide an additional novel perspective on this management
approach, we relate reach-scale estimates of water temperature to the thermal tolerance of
Smallmouth Bass (Micropterus dolomieu), an ecologically and recreationally important sport
fish in the MRB.

2. Materials and Methods
2.1. Study Area

The MRB covers an area of approximately 10,270 km2 in east-central Missouri, USA
(Figure 1). The basin contains three primary branches, including the mainstem Meramec
River and two large tributaries of the Meramec River: the Bourbeuse River and the Big
River. The Meramec River flows northeast for 351 km to the outlet at the Mississippi
River (38.39056◦ N, 90.34417◦ W), approximately 30 km south of St. Louis, Missouri.
The MRB receives an average of 104 cm of precipitation annually [26]. The primary
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land uses in the MRB are forest (68%), pasture/hay (19%), and urban (8%), with smaller
areas also represented by agriculture and wetlands [27]. The United States Geological
Survey maintains gauging stations across the basin that provide discharge data we used to
calibrate and validate our hydrologic models (https://waterdata.usgs.gov/nwis accessed
on 1 September 2020) (Figure 1).
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Figure 1. Location of the Meramec River Basin including United States Geological Survey (USGS) streamflow gauge stations,
water temperature sensors, and the Flat River.

The MRB supports relatively high levels of freshwater biodiversity and has been
identified as one of the most biologically important river basins in the United States [7,28,29].
In the 1930s, the Meramec River Basin Project proposed the construction of major dams
on the three main branches within the MRB (Meramec, Big, and Bourbeuse Rivers) and
several smaller dams on tributaries throughout the watershed. The United States Congress
authorized details of this plan in 1966, with a major impoundment initially targeted on the
main branch of the Meramec River, yet public resistance led to deauthorization of the plan
in 1981 and the MRB remains a largely free-flowing system. Despite being in relatively
good overall ecological health related to flows, excessive sediment runoff from localized
land transformations as well as impacts from mining operations (among other point and
non-point source inputs) are negatively impacting the MRB [28,30].

2.2. Soil and Water Assessment Tool Hydrologic Model

We used the Soil and Water Assessment Tool (SWAT) hydrologic model to estimate
discharge across the MRB. SWAT is a continuous-time, semi-distributed watershed model
which divides a watershed into subbasins, which are further subdivided into hydrologic
response units (HRUs) based on similarities in land cover, soil properties, and landscape
slope. For each HRU, SWAT simulates soil water balance, groundwater flow, lateral flow,

https://waterdata.usgs.gov/nwis
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channel routing (main and tributary), evapotranspiration, crop growth and nutrient uptake,
pond and wetland balances, soil pesticide degradation, and in-stream transformation of
nutrients and pesticides. Detailed descriptions of the theory and model structure are given
by Reference [31] and in the SWAT theoretical documentation [32]. To estimate water
temperature, we used an improved SWAT water temperature model developed by Ficklin
et al. [33] for ungauged subbasins in the MRB. The modified water temperature module
can better capture stream temperature change influenced by changing hydroclimatic condi-
tions caused by land-use change, implementation of management practices, and climate
change [33].

The SWAT hydrologic model for the MRB was built upon a previous version described
in Wu et al. [21]. SWAT inputs were the same as in Wu et al. [21]; however, the model was
re-calibrated and re-validated on a daily (as opposed to monthly) time step to characterize
variation in streamflow and water temperature at a time scale that was relevant to our cur-
rent study. The SWAT Calibration and Uncertainty Procedures (SWAT-CUP 2012) with the
Sequential Uncertainty Fitting version-2 (SUFI-2) [34] were used for parameter sensitivity
analysis, calibration, and validation of daily streamflow simulation. The calibration and
validation periods for streamflow were 1 January 1995–31 December 2004, and 1 January
2005–31 December 2014, respectively [as in 21].

Since SWAT-CUP was not designed to carry out calibration for the modified SWAT wa-
ter temperature model, we adopted a Multi-method Genetically Adaptive Multi-objective
Optimization Algorithm (AMALGAM) [35] to calibrate parameters influencing stream tem-
perature. AMALGAM adaptively and simultaneously employs multiple Evolution Multi-
objective Optimizers (EMOs) to ensure a reliable and computationally efficient solution
to multi-objective optimization problems. We used four EMO algorithms in AMALGAM,
including Non-dominated Sorting Genetic Algorithm II (NSGAII, [36]), Particle Swarm Op-
timization (PSO, [37]), Adaptive Metropolis Search (AMS, [38]), and Differential Evolution
(DE, [39]). Water temperatures were assembled from 15 HOBO Water Temperature Pro v2
Data Loggers deployed across the MRB and used for stream temperature calibration and
validation (Figure 1). The calibration period for the stream temperature measurements was
from 15 November 2017 to 19 July 2018, while the validation period was from 20 July 2018
to 19 November 2018. The calibrated SWAT parameters and their final values are listed in
Table 1.

Table 1. Soil and Water Assessment Tool (SWAT) calibrated parameters and their final values for the
Meramec River Basin. * Parameter value is multiplied by (1 + the fitted value).

SWAT Calibration Parameter Initial Value Range Final Fitted Value

CN2 * −0.4–0.2 0.155
ALPHA_BNK 0–1 0.799

CH_N2 −0.01–0.1 0.012
CH_K2 −0.01–100 38.890

SOL_BD * −0.4–0.4 0.011
SOL_AWC * −0.5–0.2 −0.036

SOL_K * −0.5–0.5 0.188
GWQMN 0–1000 357.860

GW_DELAY 0–300 182.894
RCHRG_DP 0–1 0.959
ALPHA_BF 0–1 0.881

SFTMP −10–10 −2.764
SMTMP −10–10 −3.112

ESCO 0–1 0.759
EPCO 0–1 0.251

CANMX 0–100 50.303
SLSUBBSN 10–150 105.526

LAT_TTIME 0–180 21.524
SLSOIL 1–150 47.512
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Table 1. Cont.

SWAT Calibration Parameter Initial Value Range Final Fitted Value

HRU_SLP 0–0.2 0.081
OV_N 0.01–15 6.334

α 0.1–1.1 1.100
β 0.1–1.1 0.100
K 0.0–0.1 0.095

Lag 0–14 7.000
CN2: SCS runoff curve number; ALPHA_BNK: baseflow alpha factor for bank storage (days); CH_N2: Manning’s
coefficient (n) for the main channel; CH_K2: Effective hydraulic conductivity in main channel alluvium (mm/hr);
SOL_BD: Moist bulk density (mg/m3); SOL_AWC: Available water capacity of the soil layer (mm); SOL_K:
Saturated hydraulic conductivity (mm/hr); GWQMN: Threshold depth of water in the shallow aquifer required for
return flow to occur (mm); GW_DELAY: Groundwater delay time (days); RCHRG_DP: Deep aquifer percolation
fraction; ALPHA_BF: Baseflow alpha factor (1/days); SFTMP: Snowfall temperature (◦C); SMTMP: Snow melt
base temperature (◦C); ESCO: Soil evaporation compensation factor; EPCO: Plant uptake compensation factor;
CANMX: Maximum amount of water that can be trapped in the canopy when the canopy is fully developed
(mm); SLSUBBSN: Slope length (m); LAT_TTIME: Lateral flow travel time (days); SLSOIL: Slope length for lateral
subsurface flow (m); HRU_SLP: Average slope of the subbasin (m/m); OV_N: Manning’s “n” value for overland
flow; α: Coefficeint influencing snow melt temperature contributions; β: Coefficient influencing groundwater
temperature contributions; K: Bulk coefficient of heat transfer (1/h); Lag: Average air temperature lag (days).

Two statistical criteria were used to quantify model performance in simulating daily
streamflow and water temperature during the calibration and validation periods: the
coefficient of determination (R2, [40]) and the Nash-Sutcliffe coefficient (NSE, [41]). The R2

value provides insight into the goodness-of-fit of the model to the observed data. The NSE
is also an indicator of goodness-of-fit and is an often-used metric because it normalizes
model performance into an interpretable scale. NSE = 1 indicates perfect correspondence
between observations and simulations. NSE = 0 indicates that the model simulations are as
accurate as the observation mean, whereas NSE < 0 indicates the model is a less accurate
predictor than the observation mean.

2.3. Climate Model Analysis and Scenario Selection

Gridded precipitation and temperature data from 1950–2099 were extracted from
General Circulation Model (GCM) outputs and integrated into calibrated and validated
SWAT models to project discharge and water temperature in the MRB over the coming
decades [42]. The United States Bureau of Reclamation has developed a daily archive of
downscaled CMIP5 (Coupled Model Intercomparison Project Phase 5) projections at a 1/8◦

resolution using the two-step bias correction and spatial disaggregation algorithm [43].
Description of downscaled CMIP5 climate and hydrologic projections and additional
documentation on the archive and the methodology can be found in Reclamation [44,45].

We analyzed 67 projections generated by 20 different climate models from the CMIP5
archive spanning four representative concentration pathways (RCPs): RCP2.6 (peak in
radiative forcing at 2.6 W/m2 before 2100); RCP4.5 (stabilization without overshoot to
4.5 W/m2 at 2100); RCP6.0 (stabilization without overshoot to 6 W/m2 after 2100); RCP8.5
(increasing radiative forcing to 8.5 W/m2 by 2100) [42]. The gridded air temperature
data were spatially averaged and compared with each climate projection to obtain air
temperature differences between the historical and the future periods. For this study, we
focused on a historical period and two future periods: 2000–2003, 2030–2033, and 2060–2063.
To condense our results yet still assess the range of impacts of a warming climate on water
temperature from our 67 GCM projections, we selected the GCM scenarios with the smallest
and the largest increases in maximum air temperature (Tmax) and the GCM scenario with
a median change compared to historical estimates.

2.4. Riparian Buffer Simulation

Riparian buffer additions throughout the MRB were simulated by creating a new land
use map by modifying the existing land use data used to calibrate and validate the SWAT
models. We did this by converting land use in the current riparian buffer zone that was
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not already represented as forest to mixed forest, except for areas currently categorized
as water or wetlands. The buffer width was set at 30.5 m on both sides of the stream
channel [21], a size suggested to be effective by Sweeney and Newbold [18]. We recognize
that the location of the modified riparian buffer is not represented in a spatially explicit
manner within each subbasin in SWAT given the nature of the model’s structure. Instead,
the buffer expansion was simulated as a type of land use change within each subbasin,
representing the influence of conversion of land use on surface runoff.

After developing the updated land use data with simulated riparian buffers, the
validated SWAT model was then run using the updated land use data in conjunction
with the current and future temperature and precipitation data described above. Outputs
from the updated riparian buffer scenario were then compared to the current riparian
condition scenario to assess the impacts of buffer expansion on streamflows and water
temperatures in each subbasin. The SWAT water temperature model does not account
for the shading effect of riparian vegetation on water temperatures. Water temperature
estimation is largely influenced by discharge volume and air temperature. Consequently,
the watershed scale temperature model is developed to determine if changes in flow will
subsequently result in altered thermal regimes. To assess the shading effects of riparian
vegetation on water temperature, outputs from the watershed-scale SWAT simulations
were input to a reach-scale water temperature model to assess potential localized cooling
effects of buffer addition on water temperatures, as follows.

2.5. Stream Network Temperature Model (SNTEMP)

SNTEMP is a mechanistic, one-dimensional heat transport model created by the
Natural Resources Conservation Service (formerly Soil Conservation Service) and The U.S.
Fish and Wildlife Service [46,47]. The main objective of SNTEMP is to simulate the effects
of management practices on mean and maximum water temperatures within local stream
sections (as opposed to SWAT, which operates at a watershed scale). The net heat flux
is computed as the addition and subtraction of heat to and from atmospheric radiation,
solar radiation, convection, conduction, evaporation, vegetation shading, fluid friction
from the streambed, and back radiation from the water. SNTEMP nodes are used to divide
the simulated reaches into segments with homogeneous flow, width, and shading. The
data required for each node include flow in, flow out, water temperature at the inlet, reach
length, top width, slope, channel roughness, and shading characterization [48,49]. The
properties applied at a node are effective downstream until the next node is found where
new calculations are made. The meteorological inputs include air temperature, relative
humidity, wind speed, and percent of possible solar exposure. Solar radiation is computed
by the model based on the nodes, latitude, time of the year, and meteorological conditions.

We selected the Flat River, a tributary of the Big River in the MRB, for SNTEMP
modeling (Figure 1). The Flat River has a total length of 3.4 km, approximately 75% forested
riparian buffer, and is within a section of the Big River that exhibited relatively high SWAT
model accuracy in the analyses presented in the previous section. Three SNTEMP nodes
(Figure 2, Table 2) were used to simulate the two riparian land use conditions: contemporary
riparian vegetation and fully restored riparian vegetation (Table 3).
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Table 2. SNTEMP nodes, distance from outlet, and shade characteristics.

Node Name Distance from Outlet Vegetation Properties

Node 0—Inlet 3.4 km Forested riparian buffer
Node 1 0.84 km No riparian vegetation
Node 2 Outlet

Table 3. Riparian land use conditions applied in SNTEMP.

LANDUSE DESCRIPTION NODES INCLUDED

CURRENT CONDITION Riparian buffer coverage = 75% forested vegetation. Node 0, Node 1, Node 2
BUFFER EXPANSION Riparian buffer coverage = 100% forested vegetation. Node 0, Node 2

Daily stream temperatures for each of our time frames (2000–2003, 2030–2033, 2060–2063)
were simulated from 1 June to 31 August, as this period includes the warmest times
of the year and the greatest potential thermal stress to freshwater taxa due to elevated
temperatures. The flow data at the inlet and outlet (Nodes 0 and 2) were extracted from
the SWAT hydrologic model outputs for each of the 18 contemporary and future GCM +
riparian vegetation scenarios (Table 4). Discharge and water temperature were input at the
inlet (Node 0) based on outputs from the SWAT hydrologic and water temperature models.
The stream geometry for each SNTEMP node and hence, for each segment, was calculated
from the watershed stream shapefile and satellite imagery [50], whereas the roughness of
the channel was provided by the SWAT calibrated model. The shading characterization is
based on topographic altitude, vegetation density, height, and tree crown diameter. The
topographic altitude refers to the angle of the sun with respect to the Earth’s horizon and
varies based on the time of day, time of year, and latitude. The topographic altitude is at
its maximum at noon and during summer and is defined as 0.9 radians for the simulated
periods (1 June to 31 August) at the latitude of the stream reach outlet (37.86◦ N). The
assumed height and crown diameter of the implemented riparian vegetation was 30 m
and 10 m, respectively. The air temperature was derived from the relevant GCM, while
monthly historical values of daily relative humidity, wind speed, and percent of the possible
sun were derived from the National Oceanic and Atmospheric Administration (NOAA)
Comparative Climatic Data database [51].

Table 4. Simulated scenarios applied in SNTEMP from 1 June–31 August of scenario year. * Simula-
tions were conducted from 1 June to 31 August each year within each period.

SCENARIO LAND USE GCM PERIOD *

1 Current Condition MRI-CGCM3-RCP2.6 2000–2003
2 Current Condition MRI-CGCM3-RCP2.6 2030–2033
3 Current Condition MRI-CGCM3-RCP2.6 2060–2063
4 Current Condition CCSM4-RCP4.5 2000–2003
5 Current Condition CCSM4-RCP4.5 2030–2033
6 Current Condition CCSM4-RCP4.5 2060–2063
7 Current Condition MIROC-ESM-RCP8.5 2000–2003
8 Current Condition MIROC-ESM-RCP8.5 2030–2033
9 Current Condition MIROC-ESM-RCP8.5 2060–2063

10 Buffer Expansion MRI-CGCM3-RCP2.6 2000–2003
11 Buffer Expansion MRI-CGCM3-RCP2.6 2030–2033
12 Buffer Expansion MRI-CGCM3-RCP2.6 2060–2063
13 Buffer Expansion CCSM4-RCP4.5 2000–2003
14 Buffer Expansion CCSM4-RCP4.5 2030–2033
15 Buffer Expansion CCSM4-RCP4.5 2060–2063
16 Buffer Expansion MIROC-ESM-RCP8.5 2000–2003
17 Buffer Expansion MIROC-ESM-RCP8.5 2030–2033
18 Buffer Expansion MIROC-ESM-RCP8.5 2060–2063
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2.6. Smallmouth Bass Thermal Tolerance

Smallmouth Bass is an ecologically and recreationally important piscivorous freshwa-
ter fish species in North America [52,53], and common in the MRB [54]. Whitledge et al. [55]
developed a bioenergetics model for Smallmouth Bass collected from Missouri and used
this model to estimate that Smallmouth Bass in the MRB region are expected to lose weight
when stream temperatures exceed 27 ◦C [56]. Accordingly, we use 27 ◦C as a threshold to
determine the frequencies when contemporary and future water temperatures estimated by
the SNTEMP model will exceed suitable conditions for this ecologically important species.
These threshold exceedance frequencies are calculated for all time periods, climate models,
and under each riparian buffer scenario.

3. Results
3.1. SWAT Model Performance

Correlations between simulated and observed streamflow generally indicate high
correspondence between the two measures (Table 5), although streamflow during storm
peaks and winter months tended to be underpredicted (Figure 3A). Average R2 values
for streamflow across the MRB ranged from 0.44 to 0.63 for calibration, and 0.34 to 0.64
for validation, while average NSE values across the MRB varied between 0.34–0.63 and
0.36–0.63 for calibration and validation, respectively (Table 5). For the water temperature
model, average R2 values for the calibration (R2 = 0.91) and validation (R2 = 0.93) periods
indicate a strong correlation between observed and simulated data (Table 6), with the
model performing well in simulating stream temperatures during the summer months
(June–August) (Figure 3B). Thus, model estimates can be reasonably used to simulate the
impacts of climate change and riparian buffer expansion during the warmest times of
the year.

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 3. (A) Observed and simulated streamflow at USGS streamflow gauge in Richwood, Mis-
souri. (B) Observed and simulated water temperature in the middle section of the Flat River. 

Table 5. Comparisons of mean, the coefficient of determination (R2), and Nash-Sutcliffe coefficient 
(NSE) for streamflow at the USGS gauges located in the Meramec River Basin for the calibration 
and validation periods. 

 
Calibration (1995–2004) Validation (2005–2014) 

Mean 
R2 NSE 

Mean 
R2 NSE 

Station 
Observe
d (m3/s) 

Simulate
d (m3/s) 

Observe
d (m3/s) 

Simulate
d (m3/s) 

Byrnesvill
e 

22.94 26.61 0.52 0.49 24.42 26.21 0.64 0.63 

Richwood
s 19.92 21.62 0.59 0.57 20.33 21.24 0.62 0.61 

Irondale 4.84 4.48 0.49 0.47 5.72 4.97 0.34 0.32 
Union 20.07 17.09 0.54 0.51 21.33 16.19 0.56 0.50 

High Gate 4.09 2.84 0.44 0.34 3.95 2.91 0.46 0.36 
Eureka 94.32 94.37 0.63 0.63 98.13 95.59 0.62 0.62 

Sullivan 34.80 36.17 0.58 0.54 36.51 41.68 0.63 0.62 
Steelville 16.57 18.28 0.52 0.51 17.79 22.60 0.59 0.57 

  

Figure 3. (A) Observed and simulated streamflow at USGS streamflow gauge in Richwood, Missouri.
(B) Observed and simulated water temperature in the middle section of the Flat River.



Sustainability 2021, 13, 1877 9 of 17

Table 5. Comparisons of mean, the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NSE) for streamflow at
the USGS gauges located in the Meramec River Basin for the calibration and validation periods.

Calibration (1995–2004) Validation (2005–2014)

Mean
R2 NSE

Mean
R2 NSE

Station Observed (m3/s) Simulated (m3/s) Observed (m3/s) Simulated (m3/s)

Byrnesville 22.94 26.61 0.52 0.49 24.42 26.21 0.64 0.63
Richwoods 19.92 21.62 0.59 0.57 20.33 21.24 0.62 0.61

Irondale 4.84 4.48 0.49 0.47 5.72 4.97 0.34 0.32
Union 20.07 17.09 0.54 0.51 21.33 16.19 0.56 0.50

High Gate 4.09 2.84 0.44 0.34 3.95 2.91 0.46 0.36
Eureka 94.32 94.37 0.63 0.63 98.13 95.59 0.62 0.62

Sullivan 34.80 36.17 0.58 0.54 36.51 41.68 0.63 0.62
Steelville 16.57 18.28 0.52 0.51 17.79 22.60 0.59 0.57

Table 6. Comparisons of mean, the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NSE) for the observed
and simulated water temperatures in the Meramec River Basin for the calibration and validation periods.

Calibration (15 November 2017–19 July 2018) Validation (20 July 2018–19 November 2018)

Mean
R2 NSE

Mean
R2 NSE

Station Observed (◦C) Simulated (◦C) Observed (◦C) Simulated (◦C)

LaBarque Creek 11.05 10.91 0.82 0.76 15.68 13.93 0.95 0.94
Red Oak Creek 12.47 11.65 0.93 0.92 19.43 18.45 0.90 0.84
Spring Creek 12.00 11.92 0.93 −1.47 17.14 18.65 0.93 −8.03
Boone Creek 12.48 11.13 0.87 0.81 18.80 17.69 0.71 0.42
Brush Creek 12.43 11.67 0.94 0.93 19.34 18.90 0.95 0.93
Clear Creek 12.91 11.77 0.92 0.90 19.74 19.18 0.95 0.91

Fourche A Renault 10.90 11.42 0.90 0.61 19.47 18.49 0.95 −0.44
Whittenburg Creek 12.21 12.31 0.85 −1.74 15.61 19.47 0.92 −4.64
Terre Bleue Creek 12.53 11.14 0.96 0.93 19.05 18.40 0.96 0.93

Flat River 14.10 11.31 0.93 0.57 19.68 18.38 0.93 0.59
Dry Fork 12.95 11.39 0.91 0.82 18.76 18.92 0.91 0.83
Big River 12.27 11.59 0.95 0.68 18.74 18.68 0.96 0.46

Curtois Creek 10.37 10.05 0.80 0.36 19.91 18.40 0.94 0.72
Meramec River 12.74 11.69 0.97 0.93 20.24 18.43 0.97 0.75
Huzzah Creek 11.88 12.08 0.96 0.77 18.50 18.58 0.98 0.49

3.2. Future Climate Variability

The Global Circulation Models (GCMs) and RCPs representing minimum, median, and
maximum projected temperature increases that were selected for further analyses include
MRI-CGCM3-RCP2.6 (Meteorological Research Institute), CCSM4-RCP4.5 (National Center
for Atmospheric Research), and MIROC-ESM-RCP8.5 (Japan Agency for Marine-Earth
Science and Technology, Atmosphere and Ocean Research Institute, and National Institute
for Environmental Studies). Among the selected projections, MRI-CGCM3-RCP2.6 projects
a 0.2 ◦C increase in Tmax, while CCSM4-RCP4.5 and MIROC-ESM-RCP8.5 both project
a 1.3 ◦C increase in Tmax for 2030–2033. From 2060–2063, MRI-CGCM3-RCP2.6, CCSM4-
RCP4.5, and MIROC-ESM-RCP8.5 GCMs project increase Tmax by 0.6 ◦C, 2.3 ◦C, and
4.1 ◦C, respectively.

3.3. SWAT Estimated Impacts of Climate Change and Riparian Buffer Expansion

The 2030–2033 and 2060–2063 simulations for the three GCMs under the current
and buffer expansion conditions were compared with the historical period of 2000–2003.
Changes in streamflow and water temperature caused by projected climate change and the
riparian buffer expansion are shown in Figures 4 and 5. The average annual streamflow is
projected to increase by 53.1% in both the current riparian conditions and buffer expansion
conditions during the summer months of 2030–2033. Streamflow is projected to further in-
crease during 2060–2063, with an average increase of 85.5% projected across the watershed
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when the riparian zone remains in the current condition, and an average increase of 85.1%
when the riparian zone is fully reforested. Even though riparian buffers in the MRB have
been projected to significantly reduced sediment in the watershed [21], results from this
watershed-scale analysis indicate that the addition of buffers will not significantly alter
average discharge as climate changes.
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Figure 4. Percent change in streamflow during the summer (June–August) based on climate change and riparian reforestation
projections. (A) average percent change in streamflow between the periods of 2030–2033 and 2000–2003; (B) average percent
change in streamflow between the periods of 2060–2063 and 2000–2003; (C) average percent change in streamflow between
the periods of 2030–2033 and 2000–2003 when the riparian zone was fully reforested; (D) average percent change in
streamflow between the periods of 2060–2063 and 2000–2003 when the riparian zone was fully reforested.
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Figure 5. Changes in stream temperature during the summer (June–August) based on climate change and riparian
reforestation projections. (A) average change in water temperature between the periods of 2030–2033 and 2000–2003;
(B) average change in water temperature between the periods of 2060–2063 and 2000–2003; (C) average change in water
temperature between the periods of 2030–2033 and 2000–2003 when the riparian zone was fully reforested; (D) average
change in water temperature between the periods of 2060–2063 and 2000–2003 when the riparian zone was fully reforested.

The SWAT water temperature model does not account for the shading influences of
riparian vegetation, with model outputs primarily influenced by changes in discharge and
air temperature. From 2030–2033, stream temperature is projected to increase by an average
of 1.1 ◦C for the summer months under both the contemporary riparian conditions and if
the riparian buffer is fully converted to forest. From 2060–2063, the projected increase in
stream temperature in the summer months is 2.3 ◦C for both contemporary and restored
riparian conditions. These minimal differences in projected water temperatures between
riparian zone scenarios are not unexpected considering the limited changes in discharge
associated with reforested riparian zones.

3.4. SNTEMP Estimated Impacts of Climate Change and Riparian Buffer Expansion

Water temperatures are projected to increase from 2000–2003 through 2060–2063
(Table 7). Nevertheless, water temperature estimates decreased with simulated increases in
riparian buffers within each time frame under all scenarios (Table 7, Figure 6). The number
of days exceeding the 27 ◦C threshold for Smallmouth Bass growth was reduced under all
scenarios with simulated increases in riparian buffers (Table 8). In particular, expansion
of riparian buffers is projected to result in a 36.2% average decrease in the number of
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days (34.3 fewer days) exceeding 27 ◦C during contemporary (2000–2003) conditions,
47.3% average decrease in the number of days (43.5 fewer days) exceeding 27 ◦C during
2030–2033, and a 39.1% average decrease in the number of days (36.0 fewer days) exceeding
27 ◦C during 2060–2063 (Table 8), suggesting the durability of the addition of riparian
buffers as climate changes.

Table 7. Average of mean daily water temperatures (◦C) estimated by SNTEMP.

Average of Mean Daily Water Temperature (◦C)

2000–2003 2030–2033 2060–2063

Current
Condition

Buffer
Expansion

Current
Condition

Buffer
Expansion

Current
Condition

Buffer
Expansion

MRI-CGCM3-RCP2.6 22.6 21.7 23.0 21.9 23.5 22.2
CCSM4-RCP4.5 23.5 22.3 24.3 23.4 24.9 23.9

MIROC-ESM-RCP8.5 23.4 22.1 24.8 23.8 26.9 26.0
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Figure 6. Daily water temperature at the outlet of the Flat River from 1 June to 31 August under selected GCM’s and
riparian buffer conditions as estimated by SNTEMP.

Table 8. Average number of days per year that water temperature at the outlet exceeded 27 ◦C as estimate by SNTEMP.
Percentages are calculated as the number of days with a maximum water temperature exceeding 27 ◦C divided by the total
number of days (N = 92) in the study period.

2000–2003 2030–2033 2060–2063

Current
Condition

Buffer
Expansion

Current
Condition

Buffer
Expansion

Current
Condition

Buffer
Expansion

MRI-CGCM3-RCP2.6
36.8 6.0 31.7 5.3 44.3 8.0

(40.0%) (6.5%) (34.5%) (5.8%) (48.2%) (8.7%)

CCSM4-RCP4.5
45.2 8.2 61.7 12.8 69.8 25.3

(49.1%) (8.9%%) (67.1%) (13.9%) (75.9%) (27.5%)

MIROC-ESM-RCP8.5
36.8 1.7 69.0 13.7 86.5 59.3

(40.0%) (1.8%) (75.0%) (14.9%) (94.0%) (64.5%)

4. Discussion

Sustaining natural flow and thermal regimes are some of the primary ecological
benefits of maintaining free-flowing river systems [1,2]. When rivers are impounded
or water diverted, flows and thermal regimes tend to deviate from historical patterns.
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Ongoing and projected changes in climate are having a generally similar effect on flow and
thermal regimes by altering discharge volume and seasonal patterns of flow variability
as well as increasing water temperatures [57,58]. While recent and ongoing changes in
climate have likely put the goal of maintaining natural (i.e., historical) flow and thermal
regimes out of reach in some areas, the opportunity to buffer against future changes in
climate using climate adaptation approaches is a possibility [59,60].

Projected changes in climate are expected to result in intensified seasonal precipitation
across the MRB, potentially increasing the frequency of high discharge events and the
amount of sediment in the river [21]. In terms of thermal stresses in the MRB, increases
in water temperature over the past century associated with the urban heat island effect
reflect the potential impacts of climate change-associated temperature increases on fish
populations [61]. Using a model-based simulation approach, Wu et al. [21] demonstrated
that riparian buffers can, in many cases, reduce the amount of sediment entering stream
channels from surface runoff, under both contemporary and future climate conditions.
We extended the approach of Wu et al. [21] to assess whether the addition of riparian
buffers could serve as a climate adaptation strategy to buffer against flow alterations
and increased water temperatures associated with a changing climate. Our work also
extends Wu et al. [21] by examining the influence of riparian buffers at a daily time-step
(as opposed to monthly in Wu et al. [21]) at multiple scales, and the potential subsequent
impacts of water temperature increases on local fish populations. Results indicate that
contemporary and future flow regimes would not be significantly altered by the addition of
riparian buffers, at least at the extent examined in this study. Results from the SWAT water
temperature model also indicate that the minimal changes in flow volumes associated
with the addition of riparian buffers would not significantly alter water temperatures. It is
important to note that projections from the SWAT water temperature model, as applied
in this study, would only be influenced by changes in discharge volume as the effects of
shading are not considered by the SWAT model.

The SNTEMP model, as opposed to the SWAT model, is able to estimate the effects
of riparian shading by accounting for reach-scale physical characteristics of the riparian
zone [46,47]. While the SNTEMP model cannot easily be developed at the watershed scale,
outputs at the reach scale can provide insights into the local thermal impacts of an intact
riparian zone [49]. Results indicate that adding a fully restored forested riparian buffer
could potentially decrease water temperatures in all scenarios, with average decreases
ranging from 0.9 ◦C–1.3 ◦C across the summer months in our analyses. Moreover, addition
of fully intact riparian buffers is projected to result in water temperatures in the 2030–2033
and 2060–2063 RCP2.6 and RCP4.5 scenarios that are lower than or, in one case, analogous
to estimated contemporary conditions.

While estimates of average changes in water temperatures provide insights into the
potential physical response of freshwater systems to changes in climate, the biological
implications of these changes based on species-specific physiological data are often un-
available. Results from our SNTEMP models indicate that re-establishment of riparian
buffers can provide critical benefits in terms of thermal thresholds for Smallmouth Bass.
For example, fully restored riparian buffers would reduce the number of days exceed-
ing the 27 ◦C growth threshold from approximately one month to less than one week
in the 2030–2033 RCP2.6 scenario and from approximately two months to less than two
weeks in the 2030–2033 RCP4.5 scenario, thus providing a dramatic increase in the number
of positive growth days for Smallmouth Bass in this section of the MRB. Moreover, re-
establishment of the riparian buffer would decrease the percentage of days exceeding 27 ◦C
in all future time periods and RCP scenarios compared to estimates based on contemporary
climate and buffer conditions, except for the 2060–2063 RCP8.5 scenario. In particular,
results from our projections suggest that restoring a forested buffer would decrease the
percentage of days exceeding 27 ◦C from 2030–2033 compared to contemporary unrestored
conditions by 34.2%, 35.2%, and 25.1% for RCP2.6 RCP 4.5, and RCP8.5, respectively. Addi-
tionally, restoring a forested buffer would decrease the percentage of days exceeding 27 ◦C
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from 2060–2063 compared to contemporary unrestored conditions by 8.7% and 27.5% for
RCP2.6 and RCP 4.5 scenarios, respectively. These results suggest the potentially significant
ecological benefits of fully restored riparian zones, with sustained habitat improvements
continuing even as climate changes.

Most research on the benefits of river restoration to freshwater fish populations has
focused on habitat improvements with the assumption of a stationary climate (reviewed in
Reference [62]). The combination of these results suggests that habitat remediation can both
concentrate fish due to shorter-term movements as well as facilitate longer-term increases
in abundance due to enhanced reproduction and survival, e.g., [63,64], with the size and
type of habitat restoration having important implications for the degree of population
response [65,66]. Considering ongoing and projected changes in climate, we now must
consider not only the size and type of habitat improvements but also the durability of
these management actions over the next several decades. Results from our multi-scale
assessment of the impacts of restored riparian buffers suggest that enhanced buffers should
have durable long-term benefits, at least in reducing water temperatures, and may offer
sustained habitat improvements compared to contemporary riparian conditions, even as
climate changes.

5. Conclusions

We simulated the potential effects of a restored forested riparian zone on discharge
and water temperatures based on an array of future climate scenarios and found that
these buffers can reduce current and future water temperatures but do little to alter flow
regimes. Moreover, the decreases in water temperature also dramatically decrease the
potential duration of thermal stress on Smallmouth Bass, which is an ecologically and
recreationally important fish within the basin. Whether intact riparian zones represent
a durable form of protection likely depends on a wide array of factors [67]. From an
ecological perspective, durability is dependent on riparian vegetation persisting over
time, which is in part due to plant species’ ability to tolerate local climate and hydrologic
variation (e.g., floods, droughts). Durability also depends on favorable social, political,
and economic conditions, which are also driven by local factors. Accordingly, establishing
durable riparian protection for rivers in the context of a changing climate is a place-based
issue where modes of application may not be effectively transferred among regions without
appropriate consideration of complex socio-environmental conditions and interactions.

While the effectiveness of forested riparian zones in contributing to sustainable devel-
opment goals is likely context-dependent, consistent regional application of management
activities designed to improve ecosystem services can generally improve conditions of
freshwater systems [68,69]. Moreover, localized protection of source water, in part through
habitat remediation such as riparian restoration, is also suggested to contribute to the
achievement of sustainable development goals [70]. While a variety of approaches will
likely be necessary to buffer the impacts of ongoing changes in climate, results from our
study of the Meramec River basin suggest that reforested riparian buffers can mitigate
against projected increases in water temperature and subsequent effects on local biodiver-
sity, thus contributing to the durability of free-flowing river systems.
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